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Abstract
Expansion of oil palm agriculture is currently one of the main drivers of habitat 
modification in Southeast Asia. Habitat modification can have significant effects on 
biodiversity, ecosystem function, and interactions between species by altering species 
abundances or the available resources in an ecosystem. Increasing complexity within 
modified habitats has the potential to maintain biodiversity and preserve species inter-
actions. We investigated trophic interactions between Argyrodes miniaceus, a clep-
toparasitic spider, and its Nephila spp. spider hosts in mature oil palm plantations in 
Sumatra, Indonesia. A. miniaceus co-occupy the webs of Nephila spp. females and sur-
vive by stealing prey items caught in the web. We examined the effects of experimen-
tally manipulated understory vegetation complexity on the density and abundance of 
A. miniaceus in Nephila spp. webs. Experimental understory treatments included en-
hanced complexity, standard complexity, and reduced complexity understory vegeta-
tion, which had been established as part of the ongoing Biodiversity and Ecosystem 
Function in Tropical Agriculture (BEFTA) Project. A. miniaceus density ranged from 
14.4 to 31.4 spiders per square meter of web, with significantly lower densities found 
in reduced vegetation complexity treatments compared with both enhanced and 
standard treatment plots. A. miniaceus abundance per plot was also significantly lower 
in reduced complexity than in standard and enhanced complexity plots. Synthesis and 
applications: Maintenance of understory vegetation complexity contributes to the 
preservation of spider host–cleptoparasite relationships in oil palm plantations. 
Understory structural complexity in these simplified agroecosystems therefore helps 
to support abundant spider populations, a functionally important taxon in agricultural 
landscapes. In addition, management for more structurally complex agricultural habi-
tats can support more complex trophic interactions in tropical agroecosystems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/151178463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.ecolevol.org
http://orcid.org/0000-0002-4637-5524
http://creativecommons.org/licenses/by/4.0/
mailto:dms12011@mymail.pomona.edu


1596  |     SPEAR et al.

1  | INTRODUCTION

Tropical habitats are experiencing rapid change as the rate of agri-
cultural expansion in the tropics increases (Foley et al., 2005; Gibbs 
et al., 2010; Hansen et al., 2008; Tylianakis, Didham, Bascompte, & 
Wardle, 2008; Tylianakis, Tscharntke, & Lewis, 2007). Oil palm is a 
leading tropical crop and has been responsible for the conversion of 
more than 10 million hectares of tropical forest over the past two de-
cades (FAO 2010; Gibbs et al., 2010; Wilcove & Koh, 2010). Forest 
conversion causes severe variation in habitat structure, microclimate, 
and resource availability, which leads to alterations in species com-
position, abundance, and interactions within ecosystems (Didham, 
Tylianakis, Gemmell, Rand, & Ewers, 2007; Fitzherbert et al., 2008; 
Franco et al., 2006; Gaston, Blackburn, & Goldewijk, 2003; Tilman, 
1994; Turner & Foster, 2009; Tylianakis et al., 2007, 2008). Changes 
in species occurrence within a habitat can result in profound impacts 
to predator–prey, host–parasite, or other species interactions (Aerts, 
1999; Kneitel & Chase, 2004; Tilman, 1994; Wright, 2002; Zobel, 
1992). Understanding and conserving species interactions is critical 
to the maintenance of species richness and ecosystem functioning as 
habitats are modified and is of paramount importance in agricultural 
ecosystems, as humans rely on many of these interactions for services 
such as pollination and pest control (Costanza et al., 1997, 2014).

Altered host–parasite relationships can cause additional changes 
to already modified ecosystems, especially if hosts or parasites are 
functionally important species (Kutz, Hoberg, Polley, & Jenkins, 
2005; Nazzi et al., 2012; Sammataro, Gerson, & Needham, 2000). In 
agroecosystems, many important pollinators, pests, and pest control 
agents are parasites or hosts (Nazzi et al., 2012; Sammataro et al., 
2000; Sheffield, Pindar, Packer, & Kevan, 2013; Tscharntke et al., 
2007). Species losses or changes to resource availability alter host–
parasite interactions through changes to host density, host fitness, 
prey availability, and the level of intra- or inter-specific competition 
(Barber & Martin, 1997; Berndt, Wratten, & Scarratt, 2006; Hahn 
& Hatfield, 1995; Irvin et al., 2006; Kruess, 2003; Rusch, Valantin-
Morison, Sarthou, & Roger-Estrade, 2011; Tilman, 1994; Tylianakis 
et al., 2007; Wilkinson & Feener, 2007; Wolinska & King, 2009). 
Increased habitat complexity can increase parasitism rates by pro-
viding additional resources for parasites, such as increased host den-
sity or food resources (Berndt et al., 2006; Irvin et al., 2006; Kruess, 
2003; Rusch et al., 2011; Tylianakis, Didham, & Wratten, 2004), but 
can also decrease parasitism rates by increasing the host’s ability to 
defend against parasites (Denno, Finke, & Langellotto, 2005; Gols 
et al., 2005; Wilkinson & Feener, 2007).

Cleptoparasites such as Argyrodes spp. (Araneae: Theridiidae) spi-
ders may be particularly sensitive to habitat change due to their di-
rect reliance on host spider success (Sheffield et al., 2013). Argyrodes 

are obligate cleptoparasitic spiders that depend solely on food re-
sources caught by their hosts and living space provided by their hosts 
(Agnarsson, 2003; Cangialosi, 1997; Vollrath, 1987b). Yet, Argyrodes 
can also have profound negative effects on host fitness (Elgar, 1989; 
McCrate & Uetz, 2010; Rittschof & Ruggles, 2010; Rypstra, 1981; 
Tanaka, 1984). Argyrodes reach densities of up to 40 individuals per 
square meter of their host’s web, and even at much lower densities, 
can consume enough prey to significantly impact host growth, web 
tenure, web damage, and host mortality (Agnarsson, 2003, 2011; 
Grostal & Walter, 1997; Koh & Li, 2002; Miyashita, 2001; Rypstra, 
1981). Argyrodes may also indirectly reduce host reproductive success: 
Male Nephila spiders, which are substantially smaller than females and 
co-occupy female webs, also act as cleptoparasites, thereby directly 
competing with resident Argyrodes for access to food (Christenson, 
Brown, Wenzl, Hill, & Goist, 1985). Because of the sensitive balance 
of competition with and dependence on hosts, any change in the in-
teractions between cleptoparasites and their hosts could be an early 
indicator of changing trophic interactions within modified ecosystems 
(Sheffield et al., 2013; Tylianakis et al., 2007, 2008). In addition, owing 
to their role as generalist predators, any changes in the trophic interac-
tions of spiders have the potential to impact pest control in agricultural 
systems (Cardinale, Harvey, Gross, & Ives, 2003; Denno et al., 2005; 
Jonsson, Wratten, Landis, & Gurr, 2008). While Argyrodes, because 
they consume insects already caught in host webs, are not likely to be 
critical pest control agents, their impacts on Nephila host health or be-
havior have the potential to alter host pest control potential. Although 
little is yet known about the role of spiders in oil palm specifically, 
they can be important pest control agents in other tropical (Hlivko & 
Rypstra, 2003; Kobayashi, 1975; Settle et al., 1996; Sigsgaard, 2000) 
and tree (Mansour, Rosen, & Shulov, 1980; Mathews, Bottrell, & 
Brown, 2004) crops.

Argyrodes abundance is known to be positively correlated 
with web size, host body size, host density, and prey availabil-
ity (Agnarsson, 2003, 2011; Cangialosi, 1990, 1991; Elgar, 1989; 
Grostal & Walter, 1997; Hénaut, Delme, Legal, & Williams, 2005; 
Koh & Li, 2002), but the overarching effects of habitat structure on 
density and abundance are less well understood (Agnarsson, 2011; 
Cangialosi, 1997; Miyashita, 2002; Rittschof & Ruggles, 2010). Here, 
we present the first study on the effects of habitat complexity in an 
oil palm agroecosystem on host–parasite interactions between a spi-
der and a cleptoparasite. We examine the impact of oil palm under-
story vegetation complexity as well as host characteristics (host web 
size and male Nephila presence) on Argyrodes miniaceus (Doleschall, 
1857) cleptoparasites in the webs of female Nephila spp. hosts (Koh 
& Li, 2002; Miyashita, 2002; Rypstra 1981). We make the follow-
ing hypotheses about the effects of these environmental factors on  
A. miniaceus density and abundance:
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1.	 Greater vegetation complexity allows for greater cleptoparasite 
density and abundance.

2.	 Cleptoparasite density is constant or greater in larger webs.
3.	 As male Nephila also act as cleptoparasites in female webs, and so 
benefit from similar environmental conditions to Argyrodes, their 
presence is positively associated with Argyrodes density.

By quantifying the effect of understory complexity on a host–par-
asite relationship, this study will yield novel insights into the effect of 
habitat structure and management on food web complexity in a tropical 
agricultural landscape.

2  | MATERIALS AND METHODS

2.1 | Study site

This study was conducted as part of the Biodiversity and Ecosystem 
Function in Tropical Agriculture (BEFTA) Project, located in Riau 
Province, Sumatra, Indonesia (Foster et al., 2014). The BEFTA Project 
is a large-scale, long-term ecological experiment testing the effects 
of understory vegetation management on oil palm biodiversity, eco-
system functions, and yield. It is being conducted in oil palm estates 
owned and managed by PT Ivo Mas Tunggal, a subsidiary company of 
Golden Agri Resources (GAR), with technical advice from Sinar Mas 
Agro Resources and Technology Research Institute (SMARTRI, the 
research and development center of GAR). The area surrounding the 
estates consists primarily of oil palm plantations, with a small coverage 
of other crops.

2.2 | Experimental treatments

Eighteen study plots were established in October 2012. Oil palm 
trees on all plots were planted between 1987 and 1993, and so were 
mature at the time of the study. Plots are 150 m by 150 m and are 
located on flat ground between 10 and 30 m above sea level and 
without adjacent human habitation. The plots are arranged in triplets, 
with one plot in each triplet randomly assigned a different understory 
vegetation management treatment. Treatments were implemented in 
February 2014, and involved the following management:

1.	 Standard understory complexity: standard company practice, 
consisting of intermediate herbicide use, and understory vege-
tation removal.

2.	 Reduced understory complexity: intensive herbicide use and re-
moval of understory vegetation.

3.	 Enhanced understory complexity: no herbicide treatment and mini-
mal understory vegetation removal.

Herbicides used in the initial establishment of the plots included 
Glyphosate (Rollup 480 SL), Paraquat Dichloride (Rolixone 276 SL), 
metsulfuron-methyl (Erkafuron 20 WG) and Fluroxypyr (Starane 290 
EC). These were sprayed exclusively on the ground vegetation and are 
unlikely to have directly affected Nephila webs. Although there is little 

evidence regarding the direct toxic effects of properly applied herbicide 
on invertebrates (Marshall, Brown, Boatman, Lutman, & Squire, 2001), at 
least one study indicates little to no direct effect of herbicide application 
on leaf-litter invertebrate communities (Lindsay & French, 2004).

2.3 | Sampling protocol

To measure cleptoparasite density, we walked along every row of 
oil palm trees in each 150 m x 150 m plot in March 2016, two years 
after the experimental treatments had been implemented. Tree rows 
were planted approximately 8 m apart, with each tree in a row also ap-
proximately 8 m apart. We noted every adult Nephila spp. web within 
the plot that was less than 3 m above the observer’s head and was 
over 10 cm in both length and width. Species of Nephila present in the 
study plots included N. pilipes (Fabricius, 1793) and N. kuhlii (Doleschal, 
1859). Argyrodes miniaceus was the only species of Argyrodes present 
on Nephila spp. webs in the study plots. Webs consist of a large central 
orb surrounded by varying amounts of barrier webbing. To obtain a 
rough estimate of the size of the web, we measured the length and 
width of the central orb of every web. We did not measure the size 
of barrier webbing, and we did not measure distances between webs, 
although we observed no interconnected webs. We counted all A. 
miniaceus cleptoparasites that were within the central orb and on the 
surrounding barrier webbing, including any web attachment threads. 
We also noted whether or not any male Nephila were present in the 
web of the larger female host.

2.4 | Analyses

All analyses were conducted using R version 3.3.0 (R-Core-Team 
2016). We calculated cleptoparasite density per web by dividing the 
number of cleptoparasites by the web area in square meters (calcu-
lated as orb length × orb width). To determine what factors best pre-
dict cleptoparasite density, we created a linear mixed effects model 
with square root transformed cleptoparasite density data as the re-
sponse variable, using the R package “lme4” (Bates, Maechler, Bolker, 
& Walker, 2015). We tested treatment, host web size (m2), and the 
presence of a male in the host web as potential explanatory variables 
and included triplet as a random effect.

We used an automatic drop-in-deviance test to select the best-fit 
model. The automatic drop-in-deviance test used a series of likelihood 
ratio tests to determine which variables most improved the mod-
el’s goodness of fit. We chose the variable with the lowest reported 
Akaike’s Information Criterion (AIC) to add to the model and repeated 
the test, adding variables one at a time until no more factors were 
significant at the α = 0.05 level (Burnham & Anderson, 1998). We then 
used additional likelihood ratio tests to determine whether including 
interactions between any of the selected explanatory variables in-
creased the model’s goodness-of-fit. The final model was the model 
with the lowest AIC value.

To examine differences in mean cleptoparasite density per web 
and abundance per plot among treatments, we conducted ANOVA 
tests on square-root transformed density data and untransformed 
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abundance data, with triplet as a random effect. We square root 
transformed the density data to avoid violating assumptions of nor-
mality of residuals and homoscedasticity. Because the effect of a 
treatment can be underestimated by p-values for small sample sizes 
(Gelman & Stern, 2006; Ioannidis, 2005), we considered results 
marginally significant for p-values below α = 0.1 for ANOVA tests 
on per-plot abundance (where n = 6 plots). After any significant or 
marginally significant results, additional ANOVAs were used to test 
pairwise differences in A. miniaceus density and abundance between 
treatments.

3  | RESULTS

We counted a total of 737 A. miniaceus individuals in 89 Nephila 
host webs in enhanced complexity plots, 703 individuals in 96 webs 
in standard complexity plots, and 106 individuals in 28 webs in 
reduced complexity plots. Six webs in enhanced complexity plots, 
six webs in standard complexity plots, and five webs in reduced 
complexity plots did not contain cleptoparasites. Webs that did 
not contain cleptoparasites ranged in size from 400 cm2 to over 
2000 cm2. The maximum number of cleptoparasites found in one 
web was 34 in enhanced complexity plots, 27 in standard complex-
ity plots, and 13 in reduced complexity plots. Mean cleptoparasite 
density was 31.4 ± 3.31 A. miniaceus per square meter of Nephila 
web in enhanced complexity plots, 29.3 ± 2.46 per square meter of 
web in standard complexity plots, and 14.4 ± 3.02 per square meter 
of web in reduced complexity plots (mean ± SE; Figure 1). Mean 
abundance of cleptoparasites per plot in the enhanced complexity 
treatment was 122.8 ± 31.21, in the standard complexity treatment 
was 117.2 ± 59.47, and in the reduced complexity treatment was 
17.7 ± 8.38 (mean ± SE; Figure 2).

Treatment, web size, and the presence of a male Nephila were 
all significant predictors of cleptoparasite density and were thus 
all included in the final model (Table 1). No interactions between 
variables were significant. Model parameter coefficients indicate 
that, on average, larger webs have lower cleptoparasite densities, 
and male presence is associated with higher cleptoparasite densities 
(Table 1).

Mean A. miniaceus density per square meter of Nephila spp. host 
web differed across treatments (F = 8.13, df = 2, p < .001) and was sig-
nificantly lower in reduced complexity plots than in both enhanced 
complexity plots (F = 18.75, df = 1, p < .001) and standard complexity 
plots (F = 11.79, df = 1, p < .001; Figure 1). Density in enhanced and 
standard complexity plots did not significantly differ (F = 2.20, df = 1, 
p = .14; Figure 1). Mean A. miniaceus abundance per plot was margin-
ally significantly different across treatments (F = 3.75, df = 2, p = .061; 
Figure 2). Abundance in enhanced complexity plots was significantly 
greater than abundance in reduced complexity plots (F = 15.29, 
df = 1, p = .011; Figure 2). Abundance in standard complexity and re-
duced complexity plots did not differ (F = 3.07, df = 1, p = .14), nor did 
abundance differ between standard and enhanced complexity plots 
(F = 0.019, df = 1, p = .90; Figure 2).

4  | DISCUSSION

Habitat complexity in agroecosystems can have profound effects 
on species interactions, with potential impacts on the provision 
of ecosystem services (Finke & Denno, 2002; Langellotto, 2002; 
Martin, Reineking, Seo, & Steffan-Dewenter, 2015). This study 
investigated factors, including habitat complexity, that influence 
Argyrodes miniaceus cleptoparasite occurrence within Nephila spp. 
host webs in oil palm plantations. Understory vegetation complex-
ity, host web size, and male Nephila presence were all significant 
predictors of A. miniaceus density in Nephila spp. host webs. Greater 

F IGURE  1 Boxplots depicting medians and interquartile ranges 
of Argyrodes miniaceus cleptoparasite density per square meter of 
Nephila spp. web in BEFTA Project plots of enhanced complexity 
(n = 89 webs), standard complexity (n = 96 webs), and reduced 
complexity (n = 28 webs) understory management treatments. Letters 
(a or b) indicate significant differences in means: a different letter 
indicates a difference from the others

F IGURE  2 Boxplots depicting medians and interquartile 
ranges of Argyrodes miniaceus cleptoparasite abundance per 
plot in BEFTA Project plots of enhanced complexity (n = 6 plots), 
standard complexity (n = 6 plots), and reduced complexity (n = 6 
plots) understory management treatments. Letters (a or b) indicate 
significant or marginally significant differences in means: a different 
letter indicates a difference from the others



     |  1599SPEAR et al.

cleptoparasite density was associated with enhanced and standard 
levels of understory complexity, smaller webs, and the presence 
of a male Nephila spp. in the web. In addition, total cleptoparasite 
abundance differed across understory complexity treatments, with 
significantly fewer cleptoparasites in reduced understory complex-
ity plots.

4.1 | Cleptoparasite density and 
vegetation complexity

Our results suggest that greater habitat complexity in oil palm plan-
tations supports higher populations of cleptoparasitic spiders, both 
per host web and in terms of total abundance. This finding adds to 
a body of literature demonstrating that vegetation complexity and 
diversity support complex food webs, although these studies were 
primarily conducted in temperate ecosystems (Macfadyen, Gibson, 
Symondson, & Memmott, 2011; Memmott et al., 2007; Pocock, 
Evans, & Memmott, 2012). For example, a study by Goulson, Hughes, 
Derwent, and Stout (2002) found that an increase in floral resources 
in suburban and agricultural habitats in the United Kingdom increased 
both the abundance of native bumblebees and the abundance of their 
specialist parasites. Ebeling, Klein, Weisser, and Tscharntke (2012) 
also report that greater plant diversity in German grasslands increases 
not only the diversity of host bee and wasp species, but the diversity 
of their parasitoids as well. Our study indicates that a similar relation-
ship exists in tropical agroecosystems.

An increased abundance of Nephila spp. host webs in enhanced and 
standard complexity plots compared to reduced complexity plots (89 cf. 
96, cf. 28) is one probable cause of the observed increase in abundance 
of A. miniaceus. Enhanced vegetation complexity may provide greater 
prey availability, which could account for the greater abundance of 
Nephila host webs as well as the higher density per web and total abun-
dance of Argyrodes within enhanced and standard complexity plots. 
Higher abundances of arthropods, including carabid and rove beetles, 
aphids, mites, Lepidopterans, and several types of Hemipterans, have 
been found in habitats with greater vegetation complexity and diver-
sity (Andow, 1991; Chaplin-Kramer, O’Rourke, Blitzer, & Kremen, 2011; 

Hansen, 2000; Landis, Wratten, & Gurr, 2000; Langellotto & Denno, 
2004; Weibull, Östman, & Granqvist, 2003). Argyrodes populations are 
limited by competition for food resources—both with the host and with 
other cleptoparasites (Miyashita, 2001; Whitehouse, 1997)—and so 
an increased abundance of prey would allow each Nephila web to sup-
port a greater density of Argyrodes cleptoparasites (Cangialosi, 1991; 
Miyashita, 2001; Whitehouse, 1988, 1997).

Distance between host webs may also play a role in cleptoparasite 
density. Isolated habitat patches are less likely to be inhabited by any 
given species (Prugh, Hodges, Sinclair, & Brashares, 2008; Watling & 
Donnelly, 2006) and are expected to exhibit high extinction and low 
immigration rates (Brown & Kodric-Brown, 1977; Fahrig & Merriam, 
1985; Hanski, 1999). Although we did not directly measure distances 
between host webs, the observed lower abundance and therefore den-
sity of Nephila host webs in reduced complexity plots suggests webs in 
these plots are more isolated than in the densely populated enhanced 
complexity plots. If we consider host webs as habitat patches, the iso-
lation of host webs in reduced complexity plots may be an additional 
contributing factor to lower cleptoparasite density. However, previ-
ous research has indicated that host web isolation does not correlate 
with cleptoparasite abundance (Agnarsson, 2011). Future research 
might more closely examine the relationship between host web inter-
distance and cleptoparasite density.

4.2 | Web size, male presence, and 
cleptoparasite density

Argyrodes miniaceus density was also correlated with host web size: 
Density was greater in smaller webs. Previous research suggests that 
cleptoparasite density should remain constant across host webs, due 
to the strong linear relationship between web size and cleptoparasite 
abundance (Agnarsson, 2011). In several studies, removal or addition 
of Argyrodes spp. individuals to host webs resulted in nearly immediate 
immigration to or emigration from the web, keeping density constant 
(Miyashita, 2001, 2002; Rypstra, 1985). Argyrodes often behave ag-
gressively toward each other, with population density limited by com-
petition for food and space (Miyashita, 2001, 2002). The observed 
disparity in cleptoparasite density among host webs of different sizes 
is therefore surprising. We found no significant differences in web size 
across treatments (D.M. Spear unpublished data), and so the observed 
trend cannot be explained by disparities in average Nephila web size 
across our treatments. Female Nephila host body size may be a con-
tributing factor to the observed differences in density. Large webs are 
typically occupied by larger or older hosts (Eberhard, 1972; Grostal 
& Walter, 1999; Kuntner, Gregorič, & Li, 2010; Moore, 1977; Witt, 
Reed, & Peakall, 2012), which can behave more aggressively toward 
cleptoparasites than younger “naïve” females, predating upon or chas-
ing occupants from webs (Cangialosi, 1991; Vollrath, 1979, 1987b; 
Whitehouse, 1988, 1997). It is possible that these older hosts may 
more effectively limit the density of Argyrodes within their webs. 
Further research is necessary to determine the potential interactive 
effects of host web size and habitat complexity on cleptoparasite 
density.

TABLE  1 Parameter coefficients (±SE) and random effect with 
variance (±SD) of the best-fit linear model predicting 
Argyrodes miniaceus cleptoparasite density per square meter of 
Nephila spp. web in BEFTA Project plots

Variable Coefficient (±SE)

Web size (m2) −2.853 (±0.663)

Male Nephila presence 1.047 (±0.465)

Reduced complexity treatment −1.979 (±0.503)

Standard complexity treatment −0.346 (±0.351)

Enhanced complexity treatmenta 0 (± 0)a

Random Effect Variance (±SD)

Triplet 0.139 (±0.373)

aEnhanced complexity treatment was used as the reference category dur-
ing model construction, so was assigned a coefficient of zero.
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The correlation between male Nephila presence and Argyrodes 
density may also reflect differences in food resources among treat-
ments. Males frequently act as cleptoparasites in females’ webs, and 
so benefit from similar factors to cleptoparasites, such as prey abun-
dance (Christenson et al., 1985; Elgar et al., 2003; Vollrath, 1987b). 
Webs that are preferable to males may be located in areas of high 
resource abundance, and so may be equally suitable for high densities 
of cleptoparasites. Grostal and Walter (1999), who similarly found a 
positive correlation between presence of Nephila plumipes host males 
and abundance of Argyrodes antipodianus cleptoparasites, also pro-
pose that males may distract the female host, thus decreasing the risk 
of predation by Nephila females for Argyrodes inhabitants and making 
male-occupied webs safer. An increased cleptoparasite load therefore 
may constitute an additional cost of reproduction for Nephila females.

4.3 | Impacts of changing cleptoparasite occurrence

High Argyrodes density could have significant impacts on hosts, in-
cluding decreased web tenure, increased web damage, decreased 
prey consumption rate, decreased growth rate, and increased mortal-
ity (Agnarsson, 2003, 2011; Grostal & Walter, 1997; Koh & Li, 2002; 
Miyashita, 2001; Rypstra, 1981). All of these effects have the poten-
tial to decrease the total rate of prey capture and the rate of reproduc-
tion of host spider populations (Chmiel, Herberstein, & Elgar, 2000; 
Elgar, 1989; Miyashita, 1986; Rypstra, 1981; Vollrath, 1987a). Such a 
decrease in host fitness could diminish the ecosystem services these 
spiders provide by reducing capture of pest or other arthropod spe-
cies (Rusch, Birkhofer, Bommarco, Smith, & Ekbom, 2015; Symondson, 
Sunderland, & Greenstone, 2002; Tscharntke et al., 2007).

However, high occurrence of both Nephila spp. and cleptopara-
sites in enhanced and standard complexity plots suggests that any 
detrimental effects of an increased cleptoparasite load are not se-
vere enough to significantly limit Nephila population levels. Resource 
availability in enhanced complexity plots must therefore be great 
enough to support both high cleptoparasite abundance and high 
Nephila density, providing evidence that higher vegetation complex-
ity increases the ability of oil palm ecosystems to support both more 
predators and more complex trophic interactions. The lower den-
sities of cleptoparasites per web area in reduced complexity plots 
suggest that fewer resources were available to support either the 
hosts or the parasites. Because cleptoparasites rely on taking any 
remaining food once their host’s energy requirements are met, clep-
toparasites are likely to be more sensitive to habitat change than 
their hosts (Sheffield et al., 2013). Thus, changes to cleptoparasite 
abundance could be a first indicator of changing trophic interactions 
across modified ecosystems (Sheffield et al., 2013; Tylianakis et al., 
2007, 2008).

5  | CONCLUSIONS

While increased vegetation complexity and diversity provides ben-
eficial resources to spiders in agricultural systems (Diehl, Mader, 

Wolters, & Birkhofer, 2013; Rypstra, Carter, Balfour, & Marshall, 
1999; Schmidt, Roschewitz, Thies, & Tscharntke, 2005), this study 
shows that vegetation complexity also has the potential to increase 
cleptoparasite loads. The most likely reason for this is that main-
taining understory vegetation in oil palm plantations provides ad-
ditional resources that support a greater abundance and density 
of Nephila hosts, and also a greater number of cleptoparasites per 
web. This study demonstrates the potential of within-plantation 
management to increase the complexity of tropical food webs, in-
creasing the abundance of both predators and the parasites they 
support, with potential impacts on the ecosystem services that 
predators provide.
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