403 research outputs found
Spécification et génération automatique de sites Internet
La démocratisation d'Internet a entraßné l'émergence de sites Web de plus en plus complexes. Ainsi, les coûts de maintenance et de développement ont subi une constante augmentation. L'objectif du projet DCI-Web (Description Comportementale d'Interfaces Web) est de définir un langage de spécification capable de modéliser les différents aspects d'un site Web puis de le générer. Cette génération doit donc permettre de diminuer les coûts de développement tout en fournissant un systÚme plus fiable et donc plus facile à maintenir. L'apport majeur de notre méthode est la possibilité de modéliser facilement et de maniÚre exhaustive les parties dynamiques et le comportement des sites Web générés. La navigation, vue sous forme de menu, est alors simplifiée par l'utilisation des dites parties dynamiques. Contrairement aux autres approches existantes, notre spécification se base sur des systÚmes d'informations déjà existants. L'impact de ce choix sur la spécification et le développement des interfaces générées est étudié dans la suite de ce mémoire
Differences in the signaling pathways of α1A- and α1B-adrenoceptors are related to different endosomal targeting
Aims: To compare the constitutive and agonist-dependent endosomal trafficking of α1A- and α1B-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype.
Methods: Using CypHer5 technology and VSV-G epitope tagged α1A- and α1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot).
Results and Conclusions: Constitutive as well as agonist-induced trafficking of α1A and α1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to ÎČ-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-ÎČ-cyclodextrin
Cell surface delivery and structural re-organization by pharmacological chaperones of an oligomerization-defective α1b-adrenoceptor mutant demonstrates membrane targeting of GPCR oligomers
Many G-protein-coupled receptors, including the α1b-adrenoceptor, form homo-dimers or oligomers. Mutation of hydrophobic residues in transmembrane domains I and IV alters the organization of the α1b-adrenoceptor oligomer, with transmembrane domain IV playing a critical role. These mutations also result in endoplasmic reticulum trapping of the receptor. Following stable expression of this α1b-adrenoceptor mutant, cell surface delivery, receptor function and structural organization were recovered by treatment with a range of α1b-adrenoceptor antagonists that acted at the level of the endoplasmic reticulum. This was accompanied by maturation of the mutant receptor to a terminally N-glycosylated form, and only this mature form was trafficked to the cell surface. Co-expression of the mutant receptor with an otherwise wild-type form of the α1b-adrenoceptor that is unable to bind ligands resulted in this wild-type variant also being retained in the endoplasmic reticulum. Ligand-induced cell surface delivery of the mutant α1b-adrenoceptor now allowed co-recovery to the plasma membrane of the ligand-binding-deficient mutant. These results demonstrate that interactions between α1b-adrenoceptor monomers occur at an early stage in protein synthesis, that ligands of the α1b-adrenoceptor can act as pharmacological chaperones to allow a structurally compromised form of the receptor to pass cellular quality control, that the mutated receptor is not inherently deficient in function and that an oligomeric assembly of ligand-binding-competent and -incompetent forms of the α1b-adrenoceptor can be trafficked to the cell surface by binding of a ligand to only one component of the receptor oligomer
The differential effects of the gonadotropin receptors on aromatase expression in primary cultures of immature rat granulosa cells are highly dependent on the density of receptors expressed and the activation of the inositol phosphate cascade
Signaling pathways mediating the divergent effects of FSH and LH on aromatase in immature rat granulosa cells were studied by infecting cells with increasing amounts of adenoviral vectors for the hLHR or hFSHR. Increasing amounts of Ad-hLHR, used at a multiplicity of infection (MOI) of 20 or 200 viable viral particles/cell increased hCG binding, hCG-induced cAMP and Akt phosphorylation but inositol phosphates only increased in response to hCG in cells infected with 200 MOI Ad-hLHR. In contrast hCG increased aromatase expression in cells infected with 20 but not in cells infected with 200 MOI Ad-hLHR. Cells infected with 20 or 200 MOI Ad-hFSHR showed increased hFSH binding and hFSH-induced Akt phosphorylation, but the hFSH-induced cAMP response was unchanged relative to control cells. However, hFSH was able to stimulate the inositol phosphate cascade in the Ad-hFSHR infected cells, and the hFSH induction of aromatase was abolished. We also found that activation of C kinase or expression of a constitutively active form of Gαq inhibited the induction of aromatase by hFSH or 8Br-cAMP. We conclude that the differential effects of FSH and LH on aromatase in immature granulosa cells are highly dependent on gonadotropin receptor density and on the signaling pathways activated. We propose that aromatase is induced by common signals generated by activation of the FSHR and LHR (possibly cAMP and Akt) and that the activation of the inositol phosphate cascade in cells expressing a high density of LHR or FSHR antagonizes this induction
Angiotensin type 1A receptor regulates ÎČ-arrestin binding of the ÎČ2-adrenergic receptor via heterodimerization
Heterodimerization between angiotensin type 1A receptor (AT1R) and ÎČ2-adrenergic receptor (ÎČ2AR) has been shown to modulate G protein-mediated effects of these receptors. Activation of G protein-coupled receptors (GPCRs) leads to ÎČ-arrestin binding, desensitization, internalization and G protein-independent signaling of GPCRs. Our aim was to study the effect of heterodimerization on ÎČ-arrestin coupling. We found that ÎČ-arrestin binding of ÎČ2AR is affected by activation of AT1Rs. Costimulation with angiotensin II and isoproterenol markedly enhanced the interaction between ÎČ2AR and ÎČ-arrestins, by prolonging the lifespan of ÎČ2AR-induced ÎČ-arrestin2 clusters at the plasma membrane. While candesartan, a conventional AT1R antagonist, had no effect on the ÎČ-arrestin2 binding to ÎČ2AR, TRV120023, a ÎČ-arrestin biased agonist, enhanced the interaction. These findings reveal a new crosstalk mechanism between AT1R and ÎČ2AR, and suggest that enhanced ÎČ-arrestin2 binding to ÎČ2AR can contribute to the pharmacological effects of biased AT1R agonists. © 201
Internalization Dissociates ÎČ2-Adrenergic Receptors
G protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that ÎČ2-adrenergic receptors (ÎČ2ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization. We use bioluminescence-resonance energy transfer (BRET) to monitor movement of ÎČ2ARs between subcellular compartments. BRET between ÎČ2ARs and plasma membrane markers decreases in response to agonist activation, while at the same time BRET between ÎČ2ARs and endosome markers increases. Energy transfer between ÎČ2ARs is decreased in a similar manner if either the donor- or acceptor-labeled receptor is mutated to impair agonist binding and internalization. These changes take place over the course of 30 minutes, persist after agonist is removed, and are sensitive to several inhibitors of arrestin- and clathrin-mediated endocytosis. The magnitude of the decrease in BRET between donor- and acceptor-labeled ÎČ2ARs suggests that at least half of the receptors that contribute to the BRET signal are physically segregated by internalization. These results are consistent with the possibility that ÎČ2ARs associate transiently with each other in the plasma membrane, or that ÎČ2AR dimers or oligomers are actively disrupted during internalization
Improved methodical approach for quantitative BRET analysis of G protein coupled receptor dimerization
G Protein Coupled Receptors (GPCR) can form dimers or higher ordered oligomers, the process of which can remarkably influence the physiological and pharmacological function of these receptors. Quantitative Bioluminescence Resonance Energy Transfer (qBRET) measurements are the gold standards to prove the direct physical interaction between the protomers of presumed GPCR dimers. For the correct interpretation of these experiments, the expression of the energy donor Renilla luciferase labeled receptor has to be maintained constant, which is hard to achieve in expression systems. To analyze the effects of non-constant donor expression on qBRET curves, we performed Monte Carlo simulations. Our results show that the decrease of donor expression can lead to saturation qBRET curves even if the interaction between donor and acceptor labeled receptors is non-specific leading to false interpretation of the dimerization state. We suggest here a new approach to the analysis of qBRET data, when the BRET ratio is plotted as a function of the acceptor labeled receptor expression at various donor receptor expression levels. With this method, we were able to distinguish between dimerization and non-specific interaction when the results of classical qBRET experiments were ambiguous. The simulation results were confirmed experimentally using rapamycin inducible heterodimerization system. We used this new method to investigate the dimerization of various GPCRs, and our data have confirmed the homodimerization of V2 vasopressin and CaSR calcium sensing receptors, whereas our data argue against the heterodimerization of these receptors with other studied GPCRs, including type I and II angiotensin, ÎČ2 adrenergic and CB1 cannabinoid receptors
Defining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin
Receptor-type protein tyrosine phosphatases (RPTPs) of the R3 subgroup play key roles in the immune, vascular and nervous systems. They are characterised by a large ectodomain comprising multiple FNIII-like repeats, a transmembrane domain, and a single intracellular phosphatase domain. The functional role of the extracellular region has not been clearly defined and potential roles in ligand interaction, di-merization, and regulation of cell-cell contacts have been reported. Here bimolecular fluorescence complementation (BiFC) in live cells was used to examine the molecular basis for the interaction of VE-PTP with VE-cadherin, two proteins involved in endothelial cell contact and maintenance of vascu-lar integrity. The potential of other R3-PTPs to interact with VE-cadherin was also explored using this method. Quantitative BiFC analysis, using a VE-PTP construct expressing only the ectodomain and transmembrane domain, revealed a specific interaction with VE-cadherin, when compared with con-trols. Controls were sialophorin, an unrelated membrane protein with a large ectodomain, and a mem-brane anchored C-terminal Venus-YFP fragment, lacking both ectodomain and transmembrane do-mains. Truncation of the first 16 FNIII-like repeats from the ectodomain of VE-PTP indicated that re-moval of this region is not sufficient to disrupt the interaction with VE-cadherin, although it occurs predominantly in an intracellular location. A construct with a deletion of only the 17th domain of VE-PTP was, in contrast to previous studies, still able to interact with VE-cadherin, although this also was predominantly intracellular. Other members of the R3-PTP family (DEP-1, GLEPP1 and SAP-1) also exhibited the potential to interact with VE-cadherin. The direct interaction of DEP-1 with VE-cadherin is likely to be of physiological relevance since both proteins are expressed in endothelial cells. Together the data presented in the study suggest a role for both the ectodomain and transmembrane domain of R3-PTPs in interaction with VE-cadherin
- âŠ