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Abstract 13 

Heterodimerization between angiotensin type 1A receptor (AT1R) and β2-adrenergic 14 

receptor (β2AR) has been shown to modulate G protein-mediated effects of these 15 

receptors. Activation of G protein-coupled receptors (GPCRs) leads to β-arrestin 16 

binding, desensitization, internalization and G protein-independent signaling of 17 

GPCRs.   Our aim was to study the effect of heterodimerization on β-arrestin 18 

coupling. We found that β-arrestin binding of β2AR is affected by activation of AT1Rs. 19 

Costimulation with angiotensin II and isoproterenol markedly enhanced the 20 

interaction between β2AR and β-arrestins, by prolonging the lifespan of β2AR-induced 21 

β-arrestin2 clusters at the plasma membrane. While candesartan, a conventional 22 

AT1R antagonist, had no effect on the β-arrestin2 binding to β2AR, TRV120023, a β-23 

arrestin biased agonist, enhanced the interaction.  24 

These findings reveal a new crosstalk mechanism between AT1R and β2AR, and 25 

suggest that enhanced β-arrestin2 binding to β2AR can contribute to the 26 

pharmacological effects of biased AT1R agonists. 27 

28 
29 

Highlights: 30 

Heterodimerization between AT1R and β2AR enhances β-arrestin coupling of β2AR. 31 

Heterodimerization increases the lifespan of β-arrestin2 clusters after β2AR 32 

stimulation. 33 

Biased AT1R ligands alter the function of heterodimerized β2AR. 34 
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1. Introduction 43 

 44 

G protein-coupled receptors (GPCRs) are the largest plasma membrane receptor 45 

superfamily, and according to estimations ~40% of the marketed drugs target GPCRs 46 

(Whalen, Rajagopal and Lefkowitz, 2011). Although the monomeric form of GPCRs is 47 

functional, a large number of evidence has accumulated demonstrating that they are 48 

also capable to form higher order complexes (Milligan, 2013). A very intriguing finding 49 

is that dimerization or oligomerization can greatly influence the signaling properties of 50 

GPCRs (Ferre, Casado, Devi et al., 2014). It has been reported that GPCR 51 

dimerization can result in altered ligand binding, receptor conformation or effector 52 

functions (Smith and Milligan, 2010,Szidonya, Cserzo and Hunyady, 2008). 53 

Heterodimerization between GPCRs widens the number of the possible physiological 54 

receptor crosstalk mechanisms, and helps fine tune receptor functions (Ferre, Baler, 55 

Bouvier et al., 2009,Jonas, Rivero-Muller, Huhtaniemi et al., 2013,Rivero-Muller, 56 

Jonas, Hanyaloglu et al., 2013). On the other hand, receptor dimerization can also 57 

cause unexpected drug interactions.  58 

Angiotensin type 1A receptor (AT1R) and β-adrenergic receptors (βAR) play crucial 59 

role in the regulation of heart function and vascular tone under physiological and 60 

pathophysiological conditions, therefore they are pivotal drug targets in 61 

cardiovascular diseases, including heart failure or hypertension (Whalen et al., 2011). 62 

Moreover, they were shown to form dimeric complexes and the blockade of either 63 

protomer with an antagonist can result in simultaneous hindering of the other 64 

protomer’s G protein activation (Barki-Harrington et al., 2003). 65 

In addition to G proteins, β-arrestin molecules are also considered to be effector 66 

proteins of GPCRs. β-arrestins govern GPCR desensitization, endocytosis and also 67 

participate in G protein-independent signaling pathways (Shenoy and Lefkowitz, 68 



2011). β-arrestins regulate β2AR function via several mechanisms. β-arrestin2 69 

induces desensitization and internalization of β2AR, and these effects have been 70 

linked to tachyphylaxis of β2-adrenergic agonists (Deshpande, Theriot, Penn et al., 71 

2008). This phenomenon greatly limits the use of β2-agonist drugs in the treatment of 72 

bronchial asthma. β-arrestins also mediate signaling of β2AR. β-arrestin2 initiates the 73 

activation of MAPK cascade independently of G protein activation (Shenoy, Drake, 74 

Nelson et al., 2006), and β-arrestins promote cardiomyocyte contraction (Carr, 75 

Schilling, Song et al., 2016). Chronic activation of β2-adrenergic receptor by 76 

catecholamines leads to DNA damage via β-arrestin1 (Hara, Kovacs, Whalen et al., 77 

2011). β-arrestin1 facilitates the MDM2 promoted ubiquitination and degradation of 78 

p53. In the absence of β-arrestin1 this effect of β2AR is greatly abrogated. These 79 

examples show the central role of β-arrestins in the function of β2AR. 80 

Activation of G proteins by AT1R is considered to evoke deleterious effects in several 81 

pathophysiological conditions. However, stimulation of the G protein-independent, β-82 

arrestin-mediated signaling pathways through AT1R has been shown to have 83 

beneficial outcomes (Hunyady and Catt, 2006,Whalen et al., 2011). The clinically 84 

used conventional AT1R antagonist drugs antagonize both pathways, so the desired 85 

β-arrestin-mediated favorable effects are also blocked. Thus, it is proposed, that 86 

ligands which are able to antagonize the G protein activation of a GPCR, but still able 87 

to induce the β-arrestin dependent signaling, could be prosperous drugs in many 88 

pathological circumstances(Whalen et al., 2011). Such β-arrestin biased agonist 89 

ligands have been already discovered for AT1R. The first such ligand was 90 

[Sar1,Ile4,Ile8]-AngII, however its clinical use was seriously hindered because of its 91 

poor receptor affinity (Wei, Ahn, Shenoy et al., 2003). Since then, new peptides with 92 

higher affinity, like TRV120023 or TRV120027, have been developed, which offered 93 

the possibility of the clinical application (Rajagopal, Ahn, Rominger et al., 94 

2011,Szakadati, Toth, Olah et al., 2015,Violin, Crombie, Soergel et al., 2014).  95 

In this study, we investigated the consequences of angiotensin type 1A 96 

receptor-β2-adrenergic receptor (β2AR) heterodimerization on β-arrestin binding 97 

using a bioluminescence resonance energy transfer (BRET)-based approach. We 98 

found that dimerization alters the β-arrestin binding of β2AR. The physiological AT1R 99 

agonist angiotensin II or the β-arrestin biased AT1R ligand TRV120023, but not the 100 

unbiased AT1R inverse agonist candesartan could potentiate β-arrestin coupling to 101 



the β2AR. These findings reveal a possible new physiological crosstalk mechanism 102 

between AT1R and β2AR. 103 

 104 

2. Materials and methods 105 

2.1. Materials 106 

The AT1R, AT1R-DRY/AAY (Gaborik, Jagadeesh, Zhang et al., 2003), AT1R-∆319 107 

(Hunyady, Bor, Balla et al., 1994), β2AR, β2AR-Sluc, untagged 5HT2CR-VGV (I156V, 108 

N158G, I160V), 5HT2CR-VGV-Sluc, PM-mRFP (mRFP fused to plasma membrane 109 

target sequence of Lyn) (Toth, Toth, Gulyas et al., 2012), AT1R-Rluc (Szakadati et 110 

al., 2015),  AT1R-Venus, β-arrestin1-Venus, β-arrestin2-Venus (Gyombolai, Boros, 111 

Hunyady et al., 2013), β-arrestin2-Rluc, β2AR-Venus (Turu, Szidonya, Gaborik et al., 112 

2006), Cameleon D3 Ca2+-BRET sensor (Gulyas, Toth, Toth et al., 2015), EPAC 113 

cAMP-BRET sensor (Erdelyi, Balla, Patocs et al., 2014) and L10-Venus (Venus fused 114 

to plasma membrane target sequence of Lck) (Toth, Gulyas, Toth et al., 2016) 115 

constructs were previously described. 5HT2CR-Venus was generated by replacing the 116 

Super Renilla luciferase (Sluc) tag to monomeric Venus (Venus) in the 5HT2CR-Sluc 117 

construct. To create the Cerulean tagged β2AR construct, the Sluc tag of β2AR-Sluc 118 

was replaced with Cerulean. To generate the YFP-β-arrestin2 construct the cDNA of 119 

rat β-arrestin2 was cloned into pEYFP-N1 vector between AgeI and KpnI restriction 120 

sites. The plasmids encoding HA epitope-tagged wild type and K44A mutant 121 

dynamin-2A were kindly provided by Dr. K. Nakayama (Tsukuba Science City, 122 

Ibaraki, Japan).  123 

Cell culture reagents were from Invitrogen (Carlsbad, CA). Cell culture dishes and 124 

white 96-well plates for BRET measurements were obtained from Greiner 125 

(Kremsmunster, Austria).  TRV120023 (Sar-Arg-Val-Tyr-Lys-His-Pro-Ala-OH) was 126 

synthetized by Proteogenix (Schiltigheim, France). Coelenterazine h was purchased 127 

from Regis Technologies (Morton Grove, IL). Unless otherwise stated, all other 128 

chemicals and reagents were from Sigma (St. Louis, MO). 129 

 130 

2.2. Cell culture and transfections 131 

HEK 293T and COS-7 cells were cultured in DMEM supplemented with 100 IU/ml 132 

penicillin, 100 µg/ml streptomycin and 10% fetal bovine serum in 5% CO2 at 37 ºC. 133 

For the BRET-experiments, the transfection was performed on cell suspension using 134 

Lipofectamine 2000 in OptiMEM according to the manufacturer’s instructions, 135 



thereafter the cells were plated on polylysine covered white 96-well plates. The 136 

measurements were performed 24 or 48 hours after transfection of HEK 293T and 137 

COS-7 cells, respectively.  138 

CHO cells were cultured in Ham’s F12 supplemented with 100 IU/ml penicillin, 100 139 

µg/ml streptomycin and 10% FBS. The day before transfection the cells were plated 140 

on 6-well plates, the transfection was achieved using Lipofectamine 2000 according 141 

to manufacturer’s protocol. 142 

For confocal microscopy experiments, HEK 293T cells were grown on glass 143 

coverslips in 6-well plates the day before transfection, and were transfected with 144 

plasmids encoding β2AR-Cerulean, AT1R-∆319 and β-arrestin2-Venus (1 µg, 4 µg, 145 

and 0.5 µg pro well, respectively) using Lipofectamine 2000. The experiments were 146 

performed the day after transfection. 147 

 148 

2.3. Bioluminescence resonance energy transfer (BRET) measurements 149 

After a washing step, the medium of HEK 293T or COS-7 cells was changed to 150 

modified Kreb’s-Ringer medium containing 120 mM NaCl, 4.7 mM KCl, 1.2 mM 151 

CaCl2, 0.7 mM MgSO4, 10 mM glucose 10 mM, pH 7.4 Na-HEPES, unless otherwise 152 

stated. 5 µM coelenterazine h, as Renilla luciferase substrate, was added to cells, 153 

thereafter luminescence was measured at 480 nm and 530 nm wavelengths by a 154 

Thermoscientific Varioskan Flash Reader (Perkin Elmer).  BRET ratio was calculated 155 

by dividing the emission collected at 530 nm with the emission measured at 480 nm. 156 

BRET signal of CHO cells was measured in cell suspension using Mithras LB 940 157 

multilabel reader (Berthold Technologies), as earlier described (Gyombolai, Toth, 158 

Timar et al., 2014). 159 

For the statistical analysis Two-Way-ANOVA tests were performed. An effect was 160 

considered statistically significant, when the p value of the interaction between the 161 

two treatments was less than 0,05. 162 

 163 

2.4. BRET-titration experiments 164 

Increasing amount of donor (Sluc containing) and acceptor (Venus containing) 165 

proteins were expressed in HEK 293T cells. Similarly to the conventional BRET 166 

experiments, before measurement the medium was changed to modified Kreb's-167 

Ringer medium. Before addition of 5 µM coelenterazine h, Venus fluorescence was 168 

measured by excitation at 510 nm and emission collected at 535 nm. After 169 



coelenterazine h treatment, luminescence was measured using 480 nm and 530 nm 170 

filters and total luminescence was determined without filter. The data analysis in 171 

details was earlier described (Szalai, Hoffmann, Prokop et al., 2014). Briefly, 172 

measured points were grouped into high/low luminescence group by the median 173 

luminescence value for β2AR-Sluc and AT1R-Venus expressing cells. The effect of 174 

luminescence on the measured BRET ratio was evaluated by covariance analysis, 175 

forcing the regression line through the origin. 176 

 177 

2.5. Confocal laser-scanning microscopy and image analysis 178 

The media of the cells were changed to modified Kreb's-Ringer medium. Time-series 179 

images were taken every 10 seconds for 190 seconds from the bottom of the cells 180 

with a Zeiss LSM 710 confocal laser-scanning microscope using a 63x objective at 181 

37 °C. Size of the images was 79.38 x 79.38 m with 1024x1024 resolution. 182 

Individual cells were selected and cropped in Fiji ImageJ software and processed for 183 

further analysis.  -arrestin puncta were identified on images with neural network 184 

algorithm using Keras and sklearn libraries in python programming language 185 

(https://github.com/fchollet/keras, http://scikit-learn.org/). Stacks of images were 186 

sliced into samples with sliding window of 20x20 pixels and each sample was 187 

classified as β-arrestin puncta or background. Classifier was trained on examples 188 

which were selected from images taken in separate experiments. 2809 negative and 189 

664 positive samples were used total which were randomly divided into 2326 training 190 

and 1147 cross-validation examples. With a network with two hidden layers, the 191 

cross-validation resulted in an average of 98 percent both for precision and recall. 192 

After classification of the samples, the original sized binary image was reconstructed 193 

and was further processed for tracking with trackpy library (https://github.com/soft-194 

matter/trackpy). Particles present on the tenth image were selected with size of at 195 

least 5 pixels and were tracked with memory set to 3. Duration of puncta was 196 

determined and the puncta were divided into two subgroups based on their lifespan. 197 

The distributions were statistically compared with Fischer’s exact test.  198 

For determination of the β-arrestin binding phenotype, images were taken from the 199 

middle cross section of the cells 20-40 minutes after stimulation at 37 °C. 200 

 201 

3. Results 202 

 203 



3.1. β2AR and AT1R form heterodimers 204 

The existence and the functional relevance of the β2AR-AT1R heterodimer have been 205 

reported earlier (Barki-Harrington et al., 2003). To verify the presence of 206 

heterodimerization between β2AR and AT1R, we performed BRET-titration 207 

experiments in HEK 293T cells. Sluc-tagged β2AR was used as BRET donor and 208 

Venus-tagged AT1R as BRET acceptor. In the classical BRET-titration experiments 209 

the amount of the donor molecule-encoding plasmid is held constant, while the 210 

acceptor-encoding plasmid is gradually increased. Despite of the constant amount of 211 

donor-encoding plasmid, the donor molecule expression was strongly dependent on 212 

the number of the acceptor molecule in our system, namely increased fluorescence 213 

levels led to a drop in the measured luminescence (Suppl. Fig. 1). Formerly we and 214 

others have shown that the correct interpretation of the classical approach is 215 

seriously hindered when the expression of the BRET donor is not maintained 216 

constant (Lan, Liu, Li et al., 2015,Szalai et al., 2014). With the use of computer 217 

simulations and in vitro experiments, we recently developed a new approach for the 218 

analysis of quantitative BRET data, where the BRET ratio is plotted as the function of 219 

the acceptor-labeled receptor expression at various donor receptor expression levels 220 

(Szalai et al., 2014). Briefly, we found that in case of non-specific interactions the 221 

BRET ratio is only dependent on the number of the acceptor molecules. In case of 222 

specific interactions, the BRET ratio is dependent both on the amount of acceptor 223 

and donor molecules (for more details see: (Szalai et al., 2014)). In our experiments, 224 

we confirmed the specific interaction between β2AR and AT1R, since a linear 225 

regression with lower steepness could be fitted on high luminesce points compared 226 

to the low luminescence points (Fig. 1A). On the other hand, we detected no specific 227 

interaction between Sluc-tagged β2AR and Venus-tagged serotonin 2C receptor 228 

(5HT2cR), as the donor expression did not influence the slope of the linear regression 229 

(Fig. 1B). This result shows that β2AR forms heterodimer with AT1R, but not with 230 

5HT2cR. 231 

 232 

3.2. Activation of AT1R influences the β-arrestin2 binding to β2AR within a 233 

heteromer 234 

To investigate the crosstalk between the β2AR-AT1R heterodimer, we designed a 235 

BRET-based experimental approach. We cotransfected the cells with plasmids 236 

encoding Sluc-tagged β2AR, C-terminally Venus-tagged β-arrestin2 and untagged 237 



AT1R. Using this experimental setup, we were able to selectively monitor the β-238 

arrestin2 binding of the β2AR and the impact of the AT1R stimulation on the β2AR-β-239 

arrestin2 association (Fig. 2A). Isoproterenol (ISO, 10 μM), a β2AR agonist, induced 240 

an increase in the BRET ratio, reflecting the β-arrestin2 binding to the β2AR (Fig. 2B). 241 

Angiotensin II (AngII, 100 nM), which exerts its main physiological effects via AT1R, 242 

alone induced only a slight increase in the BRET ratio. Strikingly, during 243 

simultaneous activation of the two receptors, the association between β-arrestin2 and 244 

β2AR was significantly potentiated. Similar results were obtained in COS-7 and CHO 245 

cells (Suppl. Fig. 2A and B, in case of CHO cells β2AR was tagged with acceptor and 246 

β-arrestin2 with donor). Since the BRET ratio is also dependent on the relative 247 

orientation of the donor and acceptor molecules, we tested the interaction with N-248 

terminally YFP-tagged β-arrestin2 (Suppl. Fig. 3). We observed a similar effect 249 

indicating that the BRET increase does not originate from conformational changes, 250 

but reflects the increased interaction of β2AR and β-arrestin2. The β-arrestin1 binding 251 

of β2AR was also examined by BRET, and a very similar response was found (Suppl. 252 

Fig. 4). We have also investigated the dose-dependence of the ISO effect on β-253 

arrestin2 binding to β2AR in the presence or absence of AngII (Fig. 2C). We found 254 

that 100 nM AngII could increase the ISO-mediated β-arrestin2 binding already at 255 

lower ISO concentrations. In addition to the increased maximal response, AngII 256 

treatment also caused a left-shift in the β-arrestin2 binding curve (log EC50 (M) -7.48 257 

vs -7.17, p<0.05, tested with Student’s t-test), thus at lower ISO concentrations AngII 258 

raised the β2AR-β-arrestin2 association more markedly. 259 

Since β-arrestin2 also binds to the AT1R, one could assume that, in case of 260 

costimulation, β-arrestin2 translocates to the AT1R, and nonspecific BRET is 261 

detected between β2AR and membrane-translocated β-arrestin2. To rule out this 262 

possibility, we transfected a C-terminally truncated AT1 receptor (AT1R-∆319), which 263 

is impaired in the ability of β-arrestin2 binding, because it lacks the major docking site 264 

of β-arrestins (Fig. 2D) (Balla, Toth, Soltesz-Katona et al., 2012,Qian, Pipolo and 265 

Thomas, 2001). In contrast to the small BRET ratio elevation when wild type AT1R 266 

was used, AngII stimulation alone did not lead to any change in basal BRET signal. 267 

However, a significant increase in the BRET signal was still present after 268 

costimulation of β2AR and AT1R-∆319, indicating that the association between β2AR 269 

and β-arrestin2 was enhanced. 270 



Next, we checked whether β2AR could also influence the β-arrestin2 binding of the 271 

AT1R. In these experiments the AT1R was tagged with Rluc and the β2AR was 272 

untagged (Suppl. Fig. 5). Nonetheless, the β2AR stimulation with ISO (10 μM) had no 273 

significant effect on the BRET between AT1R-Rluc and β-arrestin2-Venus after AngII 274 

treatment. We concluded that the strong β-arrestin2 binding of AT1R cannot be 275 

further increased by β2AR stimulation.  276 

 277 

3.3. Signaling pathways originating from AT1R are not essential for the 278 

modulation of β2AR signaling 279 

To reveal the underlying mechanism of the AT1R induced potentiation of the β2AR β-280 

arrestin2 binding, we used an AT1R mutant that is deficient in G protein activation 281 

(AT1R-DRY/AAY) (Gaborik et al., 2003). After stimulation of this mutant with AngII the 282 

β-arrestin binding of the β2AR was increased similar to the wild type AT1R (Fig. 3A). 283 

However, the kinetics of the potentiation was slower compared to that of the wild type 284 

AT1R.  285 

Wild type AT1R is coupled to Gq/11 proteins, thus after receptor activation the second 286 

messengers inositol trisphosphate (IP3) and diacylglycerol (DAG) are produced by 287 

phospholipase C (Hunyady and Catt, 2006). IP3 is responsible for the calcium release 288 

from the intracellular stores, while DAG is important in the activation of protein kinase 289 

C. However, administration of a specific inhibitor of protein kinase C 290 

(Bisindolylmaleimide I /BIM/,2 µM) or calcium depletion of the cells in calcium-free 291 

media with calcium chelator EGTA (100 µM) and 200 nM thapsigargin /TG/) could not 292 

block the AT1R mediated increase in the β2AR β-arrestin2 binding (Fig. 3B). Calcium 293 

depletion abolished the AngII-induced calcium signaling, which is shown using a 294 

calcium responsive BRET biosensor (Gulyas et al., 2015) (Suppl. Fig. 6). 295 

Coactivation of untagged 5HT2CR, which receptor is coupled to similar signaling 296 

pathways as AT1R (Balla et al., 2012), but does not dimerize with β2AR, could not 297 

induce the potentiation of β-arrestin binding (Suppl. Fig. 7). These results and the 298 

data obtained with the AT1R-DRY/AAY mutant suggest that G protein activation is not 299 

necessary for this effect.  300 

In the past years it has become evident that AT1R can also signal in the absence of 301 

G protein activation. Among others, β-arrestin dependent Src and MAP kinase 302 

activation has been described (Fessart, Simaan and Laporte, 2005,Hunyady and 303 

Catt, 2006). Src (PP1, 1 µM) and MEK (PD98059, 20 µM) inhibitors did not interfere 304 



with the increased BRET ratio during costimulation of the receptors (Fig. 3B). These 305 

results, and the fact that the stimulation of the β-arrestin binding deficient AT1R 306 

mutant (AT1R-∆319) was capable to increase the β-arrestin2 binding of β2AR, 307 

suggest that β-arrestin mediated signaling is not required for the observed 308 

phenomenon. 309 

β-arrestin2 dissociates from β2AR after its internalization (Oakley, Laporte, Holt et al., 310 

1999), therefore an increased β2AR-β-arrestin2 interaction could origin from the 311 

inhibition of receptor endocytosis. To block β2AR endocytosis, we overexpressed a 312 

dominant negative mutant  dynamin2A (dynamin2A-K44A), which has been shown to 313 

inhibit agonist induced internalization (Scarselli and Donaldson, 2009,Zhang, 314 

Ferguson, Barak et al., 1996). Indeed, the ISO-induced BRET signal was significantly 315 

elevated (Suppl. Fig. 8). However, the cotreatment with AngII and ISO still increased 316 

the BRET signal under these circumstances, showing that the observed effect cannot 317 

be explained by AT1R induced blockade of β2AR internalization. 318 

Since the observed effect was independent on activation of the investigated signaling 319 

pathways, we concluded that it is mediated by heterodimerization between the β2AR 320 

and AT1R. 321 

 322 

3.4. β-arrestin2 binding of β2AR is dependent on the expression of AT1R 323 

Since β2AR can be present in both monomeric and dimeric states, only a portion of 324 

β2ARs interact with AT1R. Presuming random pairing of the two receptors, the 325 

relative number of β2AR-AT1R heterodimers should be elevated by increasing the 326 

AT1R-β2AR expression ratio. Therefore, we increased the amount of the AT1R 327 

encoding plasmid during the transfection, while keeping the amount of the β2AR-Sluc 328 

plasmid constant. As shown in Fig. 4A and B, no AngII effect was detected in 329 

absence of AT1R. By increasing the AT1R:β2AR DNA ratio, when compared to ISO 330 

stimulation, the costimulation with AngII and ISO caused gradually increased BRET 331 

signal. This elevation was not due to higher plasma membrane expression of β2AR-332 

Sluc, since ISO stimulation itself led to slightly decreased BRET signals (Fig. 4A). 333 

These results show that the magnitude of β-arrestin translocation in this system 334 

depends on the relative expression ratio of AT1R and β2AR, which is consistent with 335 

the role of heterodimers.  336 

 337 

3.5. Biased activation of AT1R affects the β-arrestin2 binding of β2AR 338 



It has been shown earlier that a conventional AT1R antagonist can simultaneously 339 

block the G protein mediated signaling of both AT1R and β2AR (Barki-Harrington et 340 

al., 2003). Therefore, we investigated the effects of different AT1R antagonists on the 341 

β-arrestin2 binding of the AT1R-β2AR heterodimer. The cotreatment with ISO and the 342 

unbiased antagonist candesartan (10 µM) had no effect on the β-arrestin2 343 

translocation (Fig. 5A). However, when we costimulated the cells with the β-arrestin 344 

biased AT1R agonist TRV120023, we detected an increase in the the β-arrestin2 345 

binding of β2AR, similarly to AngII-cotreatment (Fig. 5B), but the kinetics of the 346 

potentiation was slower. Other β-arrestin biased agonists (TRV120027 and 347 

[Sar1,Ile4,Ile8]-AngII) induced a very similar response (data not shown). These results 348 

suggest, in good agreement with the data obtained with the G protein activation-349 

deficient AT1R mutant, that the β-arrestin activating conformation of AT1 receptor 350 

enhances the β-arrestin2 binding of β2AR. 351 

 352 

3.6. Coactivation of β2AR and AT1R increases the lifespan of β-arrestin2 353 

clusters 354 

Upon β2-adrenergic receptor activation, β-arrestin2 translocates to the plasma 355 

membrane and forms clusters at the clathrin coated pits via interaction with β2-356 

adaptin (Laporte, Oakley, Holt et al., 2000). To address the mechanism of the 357 

increased β-arrestin2 binding, we measured the lifetime and intensity of β-arrestin2 358 

puncta of cells expressing β2AR-Cerulean, AT1R-Δ319 and β-arrestin2-Venus by 359 

confocal microscopy (Fig. 6A). Images were taken every 10 seconds at the bottom of 360 

the cells, and the lifespan of the individual puncta was determined. The lifespan of 361 

these β-arrestin2-Venus dots was comparable to those detected in previous studies 362 

(Eichel, Jullie and von Zastrow, 2016). AngII treatment did not lead to detectable 363 

puncta formation, since AT1R-Δ319 lacks the major binding site for β-arrestin2 (data 364 

not shown). However, the longevity of β-arrestin2 puncta was altered upon 365 

costimulation with AngII and ISO, compared to ISO stimulation alone. After 366 

costimulation, the fraction of puncta with longer lifespan was increased (Fig. 6A and 367 

B). On the other hand, we found no difference between the average fluorescence 368 

intensity values of the puncta (Suppl. Fig. 9). These results indicate that the detected 369 

increase in β-arrestin2 binding is the consequence of the stabilized interaction 370 

between β2AR and β-arrestin2. Increased β-arrestin2 localization at the plasma 371 

membrane upon costimulation was also found by BRET measurements between 372 



plasma membrane targeted Venus and β-arrestin2-Rluc in cells expressing untagged 373 

β2AR and AT1R-Δ319 (Fig. 6C). The raise of bystander BRET rises from the 374 

enrichment of β-arrestin2 in the juxtamembrane region.  375 

β-arrestins dissociate from β2AR before entering the early endosomes, therefore 376 

β2AR is classified as a class A receptor (Oakley, Laporte, Holt et al., 2000). 377 

Nevertheless, we still could not observe β-arrestin2 at early endosomes after 378 

costimulation, therefore this more stable interaction is not strong enough to convert 379 

the interaction into a class B endocytic pattern (Suppl. Fig 10). 380 

 381 

3.7. Simultaneous activation of AT1R prolongs the β2AR mediated cAMP 382 

signaling 383 

The generally considered main role of arrestins is the termination of G protein 384 

signaling (Shenoy and Lefkowitz, 2011).However, several studies have shown that 385 

noncanonical cAMP signaling arises from receptor-arrestin-G protein complexes 386 

(Feinstein, Wehbi, Ardura et al., 2011,Feinstein, Yui, Webber et al., 2013,Thomsen, 387 

Plouffe, Cahill et al., 2016,Wehbi, Stevenson, Feinstein et al., 2013). The magnitude 388 

of the noncanonical arrestin-dependent cAMP formation was associated with the 389 

stability of the receptor-arrestin interaction (Thomsen et al., 2016). Therefore, we 390 

investigated whether the sustained β-arrestin2 binding to β2AR is accompanied by 391 

prolonged cAMP signaling. We coexpressed AT1R and a BRET-based cAMP 392 

biosensor in HEK 293T cells (Erdelyi et al., 2014), and the cAMP signaling of 393 

endogenous β2AR was monitored. Neither AngII nor TRV023 treatment alone could 394 

generate cAMP (Fig. 7A and C). Remarkably, cotreatment with AngII or TRV023 395 

prolonged the ISO induced cAMP signal. Previously we have shown that calcium 396 

dependent pathways can potentiate the cAMP formation (Baukal, Hunyady, Catt et 397 

al., 1994). In calcium depleted cells we could still observe the prolonged cAMP 398 

signaling upon AngII and TRV023 costimulation, showing that the cAMP signaling 399 

was prolonged also via a calcium-independent way (Fig. 7B and C). These results 400 

show that AT1R activity influences, in addition to β-arrestin binding, the G protein 401 

dependent signaling of β2AR. 402 

 403 

4. Discussion 404 

 Here we show that the β-arrestin binding of β2AR is regulated by AT1R 405 

coactivation. These results are in good agreement with an earlier report, where the 406 



authors gave evidence that β2AR and AT1R are working as a functional unit (Barki-407 

Harrington et al., 2003). Nowadays it is widely accepted that receptor dimerization 408 

has important impact on the properties of receptor signaling. In elegant studies, using 409 

ligand-binding deficient and signaling deficient luteinizing hormone receptors, 410 

dimerization was shown to rescue the defective GPCR function both in vitro and in 411 

vivo (Jonas, Fanelli, Huhtaniemi et al., 2015,Rivero-Muller, Chou, Ji et al., 2010). 412 

Altered G protein activating ability was shown in case of D1-D2 dopamine receptor 413 

heterodimer and its possible role was raised in the pathogenesis of major depression 414 

(Pei, Li, Wang et al., 2010,Rashid, So, Kong et al., 2007).  415 

Several studies have shown that β-arrestin binding can be influenced by receptor 416 

heterodimerization. Altered β-arrestin binding was found in case of the V1-V2 417 

vasopressin receptor dimer, the µ-δ opioid receptor dimer or the CXC chemokine 418 

receptor 2-α1A adrenergic receptor heterodimer (Mustafa, See, Seeber et al., 419 

2012,Rozenfeld and Devi, 2007,Terrillon, Barberis and Bouvier, 2004). 420 

In our system, the stimulation of the untagged wild type AT1R with AngII alone led to 421 

a slight increase of the BRET ratio between the Sluc-tagged β2AR and Venus-labeled 422 

β-arrestin2. Since this increase was diminished when we used the β-arrestin binding-423 

deficient AT1R-∆319 mutant, we concluded that this signal reflects the β-arrestin 424 

translocation to the untagged AT1R resulting in nonspecific BRET between β-425 

arrestin2 and β2AR. It is worth noting that the AT1R-∆319 mutant was reported to 426 

bind β-arrestin2 very weakly (Anborgh, Seachrist, Dale et al., 2000), however it was 427 

not detectable under our experimental conditions.  428 

A similar system, named BRET heteromer identification technology (BRET-HIT), was 429 

earlier introduced as a useful approach for GPCR heteromer detection (See, Seeber, 430 

Kocan et al., 2011). This system is based on the close proximity of the heteromer 431 

partners. Thus, the β-arrestin translocation to the untagged protomer can result in the 432 

elevation of the BRET ratio between the tagged protomer and β-arrestin, because the 433 

small distances in the molecular complex allow resonance energy transfer. In case of 434 

non-dimerizing receptors this phenomenon cannot occur. However, we and others 435 

have shown previously that after stimulation of a GPCR, BRET increase can be 436 

detected between β-arrestin2-Rluc and a plasma-membrane targeted Venus, where 437 

the interaction was clearly nonspecific (Donthamsetti, Quejada, Javitch et al., 438 

2015,Gyombolai et al., 2014). This implicates that the reliability of the BRET-HIT 439 

approach is weakened at high receptor expression levels because of the high 440 



probability of nonspecific BRET signal. The BRET ratio increase after the 441 

costimulation of the Sluc-tagged β2AR and the β-arrestin binding-deficient AT1R-442 

∆319 mutant clearly shows that the β-arrestin2 binding to the β2AR is elevated, and 443 

this signal does not originate from a nonspecific interaction. The results obtained with 444 

the C-terminally truncated AT1R mutant also suggest that AT1R activation alone 445 

cannot induce β-arrestin recruitment to the β2AR. These results show that the AT1R-446 

β2AR heterodimer functions somewhat differently than the AT1R homodimer or the 447 

CXC chemokine receptor 2-α1A adrenergic receptor heterodimer, where activation of 448 

one protomer alone results in β-arrestin binding to the other protomer (Mustafa et al., 449 

2012,Szalai, Barkai, Turu et al., 2012) .  450 

Increased BRET signal can originate from increased association or from changes in 451 

orientation between the BRET partners. The latter is unlikely to occur here, since we 452 

detected similar changes using N- and C-terminally tagged β-arrestin2 variants. In 453 

addition, a simple change in orientation could not explain the leftward shift of the 454 

dose-response curve of β2AR-β-arrestin2 binding after coactivation of AT1R. 455 

Increased association of β2AR with β-arrestin2 after costimulation of the two 456 

receptors hypothetically could have three possible mechanisms. After AT1R 457 

activation 1) a higher fraction of β2ARs could bind β-arrestin; 2) one β2AR could bind 458 

to more β-arrestins concurrently; 3) the interaction between β-arrestin and β2AR 459 

could become more stable, and the elevated BRET ratio reflects this new steady-460 

state. The first possibility (more β2ARs recruiting β-arrestin) can be ruled out, since 461 

we used saturating agonist concentrations. The possibility of one receptor binding 462 

more than one β-arrestin molecule simultaneously is contradicted by the recently 463 

solved structure of the β2AR-β-arrestin1 complex (Shukla, Westfield, Xiao et al., 464 

2014). In regard to the third possible mechanism, it is well known that the interaction 465 

between β2AR and β-arrestin is relatively weak and unstable. This interaction can be 466 

strengthened by replacement of the C-terminal of β2AR to the C-terminal of V2 467 

vasopressin or AT1 receptor (Anborgh et al., 2000,Oakley et al., 1999). Therefore it is 468 

reasonable to assume that the increased stability of the interaction leads to 469 

enhanced BRET signal. In fact, the increased stability of the complex was 470 

demonstrated in our confocal experiments, which showed that the lifespan of the 471 

β2AR-β-arrestin2 clusters at the plasma membrane is increased after costimulation of 472 

AT1R and β2AR. The resolution limit of confocal microscopy does not allow us to 473 

determine that the clusters whether originate from the plasma membrane only or also 474 



from subplasmalemmal vesicles. However, we did not see β-arrestin2 colocalization 475 

with early endosomes, the β-arrestin2 binding was not changed to class B 476 

phenotype. 477 

The crystal structure of β2AR-β-arrestin1 complex shows that there is a large free 478 

interface of β-arrestin1 heading toward the plasma membrane (Shukla et al., 2014). It 479 

is therefore possible that the protomers bind one β-arrestin molecule concurrently, 480 

which would result in a stabilized interaction between β2AR and β-arrestin. However, 481 

the exact nature of the increased stability needs to be addressed in further 482 

experiments.  483 

We found that the allosteric modulation of β-arrestin binding is asymmetric between 484 

β2AR and AT1R, as costimulation of β2AR could not increase the β-arrestin binding of 485 

AT1R. Based on its β-arrestin binding properties, AT1R belongs to the family of class 486 

B receptors, meaning that β-arrestins stably associate with AT1R and cotraffic to 487 

early endosomes (Oakley et al., 2000). The stability of this interaction might be 488 

already near to its maximum, which suggests that a further increase in the binding is 489 

unlikely. 490 

We have reported earlier that the conserved DRY motif of the AT1R is crucial for the 491 

allosteric interactions in the AT1R homodimer pair (Karip, Turu, Supeki et al., 492 

2007,Szalai et al., 2012). Here we found that activation of the DRY/AAY mutant AT1R 493 

was still able to increase the β-arrestin binding properties of β2AR. This finding 494 

suggests that the DRY motif, in contrast to the AT1R homodimer, is not obligately 495 

necessary for the allosteric interaction between AT1R and β2AR.  496 

We found that Gq activation is not necessary for the sustained β2AR-β-arrestin 497 

interaction, still we cannot rule out that Gq activation could influence it. It was 498 

reported that activation of Gαq subunit targets GRK2 to the plasma membrane, which 499 

is important in the regulation of the binding between M3 muscarinic acetylcholine 500 

receptor and β-arrestin2 (Wolters, Krasel, Brockmann et al., 2015). 501 

There is mounting evidence for noncanonical cAMP signaling of several GPCRs, 502 

whereas sustained receptor-β-arrestin interaction prolongs the G protein dependent 503 

cAMP signaling (Feinstein et al., 2011,Thomsen et al., 2016). We found that 504 

coactivation of AT1R with AngII or the biased agonist TRV120023 prolonged the 505 

cAMP signaling of β2AR. It must be noted that in addition to prolonged Gs activation 506 

via heterodimer formation, the observed alteration of cAMP signal could also arise 507 

from the effect of β-arrestin dependent signaling (e.g. adenylyl cyclase activation or 508 



cAMP-phosphodiesterase inhibition) or competition between AT1R and β2AR for the 509 

desensitization machinery could also explain the observed effect on cAMP signaling. 510 

Nonetheless, our results are in good agreement with a previous study, where the 511 

authors have shown that the AT1R biased agonist [Sar1,Ile4,Ile8]-AngII potentiated the 512 

cAMP dependent gene regulation of β2AR (Christensen, Knudsen, Schneider et al., 513 

2011). 514 

The direct interaction between β2AR and AT1R has been reported previously (Barki-515 

Harrington et al., 2003). It was shown that β-blocker drugs inhibit G protein coupling 516 

of AT1R, and the conventional AT1R antagonist valsartan interferes with the β2AR-G 517 

protein coupling. We investigated whether AT1R antagonists have similar effects on 518 

the β2AR-β-arrestin interaction. We showed that the conventional AT1R antagonist 519 

candesartan had no effect on the β-arrestin binding of β2AR, while the β-arrestin-520 

biased agonist TRV120023 could increase this interaction. These results suggest that 521 

β-arrestin-biased AT1R agonists can have very different effects compared to the 522 

conventional AT1R antagonists, not only because they activate the β-arrestin 523 

dependent signaling of AT1R, but also because they could modulate the AT1R-β2AR 524 

heterodimer. It was reported that the β-arrestin-biased AT1R agonist [Sar1,Ile4,Ile8]-525 

AngII has different effect on B2 bradykinin receptor-AT1R heterodimer function 526 

compared to the unbiased AT1R antagonist valsartan (Wilson, Lee, Appleton et al., 527 

2013). This suggests that β-arrestin-biased AT1R agonists can have unexpected new 528 

effects or side effects, postulating a more careful administration of these drugs in 529 

patients in the future. In a recent Phase II clinical trial in heart failure TRV120027 has 530 

failed to have the expected positive effects (Trevena, 2016). However, our data show 531 

that biased agonists of AT1R have effects on the arrestin binding of receptor 532 

heterodimers, which may have functional relevance during the treatment of patients 533 

with inhibitors of AT1R in other diseases. 534 

In summary, we propose a model in which activation of the AT1R stabilizes the β-535 

arrestin binding of β2AR in the heterodimer of AT1R and β2AR (Fig. 8). The unbiased 536 

or biased activation of the AT1R affects the dimer partner β2AR directly, which alters 537 

the β-arrestin binding to the β2AR.  538 
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Highlights: 

Heterodimerization between AT1R and β2AR enhances β-arrestin coupling of β2AR. 

Heterodimerization increases the lifespan of β-arrestin2 clusters after β2AR 

stimulation. 

Biased AT1R ligands alter the function of heterodimerized β2AR. 

*Highlights (for review)
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Figure 1 

β2AR forms heterodimer with AT1R 

An improved form of BRET titration experiments was performed in HEK 293T cells. 

Increasing amount of plasmid encoding β2AR-Sluc and increasing amount of 

plasmids encoding AT1R-Venus or 5HT2CR-Venus were transfected in the cells, while 

keeping the total DNA amount at the same level by adding pcDNA3.1 (A and B). 

BRET ratio is plotted as the function of fluorescence, the measured points were 

divided in two subgroups: cells showing low or high luminescence. In case of AT1R-

Venus expressing cells (A) the BRET ratio was also dependent on the measured 

luminescence, indicating specific interaction between the two proteins. The BRET 

ratio in the 5HT2CR-Venus expressing cells (B) was not dependent on the 

luminescence, showing that there is no specific interaction between the two 

molecules. Dependence of BRET ratio on luminescence was determined by 

covariance analysis (*,p<0.05, n=3). 

 

Figure 2 

Activation of AT1R differs the β-arrestin binding properties of β2AR 

A, Schematic representation of our BRET-based system. β2AR is tagged with Sluc, 

AT1R is untagged and β-arrestin2 is labeled with Venus. Upon β2AR receptor 

stimulation β-arrestin2 translocates to the receptor, which enables resonance energy 

transfer to occur. We can also observe the effect of concomitant AT1R stimulation. B, 

HEK 293T cells (70000/well) were transfected with 25 ng plasmid encoding β2AR-

Sluc, with 100 ng plasmid encoding AT1R and with 100 ng plasmid encoding β-

arrestin2-Venus pro well. The change of BRET ratio was measured after stimulation 

with 100 nM angiotensin II (AngII), with 10 µM isoproterenol (ISO) or with both. C, 

The effect of 100 nM AngII on the ISO dose-response curve. Each point represents 

the average BRET ratio change. 100% reflects the BRET ratio change after 10 µM 

ISO treatment. To better observe the AngII effect on the ISO response, the BRET 

ratio change after AngII+ISO treatment was normalized to the AngII alone treated 

points. D, The cells were transfected with 25 ng plasmid encoding β2AR-Sluc, with 

100 ng plasmid encoding C-terminal truncated AT1R mutant (AT1R-∆319) and with 

100 ng plasmid encoding β-arrestin2-Venus. Data are mean±SEM, n=3-6. All the 

statistical analysis was made on the raw data, * means significant interaction 

between the two treatments (p<0.05, Two-Way ANOVA). 

 

Figure 3 

The AT1R mediated potentiation of β-arrestin2 binding to β2AR is not 

dependent on intracellular signaling 

A, HEK 293T cells were transfected with plasmids encoding β2AR-Sluc, G protein 

coupling deficient AT1R mutant (AT1R-DRY/AAY) and β-arrestin2-Venus (25 ng, 100 

ng, 100 ng pro well, respectively), and BRET was measured after ISO (10 µM) or 

AngII (100 nM) stimulations.  

Figure legends



B, The cells were transfected with plasmids encoding β2AR-Sluc, AT1R and β-

arrestin2-Venus (25 ng, 100 ng, 100 ng pro well, respectively). For calcium depletion 

the medium was changed to calcium-free modified Kreb’s Ringer medium, and the 

cytoplasmic calcium was chelated with 100 μM EGTA. Thereafter the cells were 

pretreated with 200 nM thapsigargin (TG) for 5 minutes to deplete the intracellular 

stores. To block protein kinases, the cells were pretreated with vehicle (DMSO), 2 μM 

bisindolylmaleimide I (BIM), 1 μM PP1 or 10 μM PD98059 for 30 minutes, as 

indicated. 100 nM AngII and 10 µM ISO were used as stimuli in BRET 

measurements. The columns represent the average BRET ratio change in each 

experiment. Data are mean±SEM, n=3-10. * means significant interaction between 

ISO and AngII treatments (p<0.05, Two-Way ANOVA). 

 

Figure 4  

The β-arrestin2 binding of β2AR is dependent on AT1R expression 

HEK 293T cells were transfected with 25 ng plasmid encoding β2AR-Sluc, with 100 

ng plasmid encoding β-arrestin2-Venus, and with increasing amount of plasmid 

encoding untagged AT1R (0, 12.5, 25, 50, 200 and 400 ng) pro well. Empty 

pcDNA3.1 vector was also added to keep the transfected DNA amount constant. 100 

nM AngII and 10 µM ISO were used as stimuli. Data are mean±SEM, n=3. A: The 

average BRET-change was plotted as the ratio of the transfected DNA encoding 

β2AR-Sluc and AT1R. B: To reveal the AngII mediated potentiation on the ISO effect, 

the BRET-change after ISO stimulation was subtracted from the BRET change after 

costimulation with AngII and ISO. Furthermore the BRET-change after AngII 

treatment was also subtracted, as it reflects the β-arrestin2 binding to AT1R. 

Mathematically, the BRET ratio change was calculated as (AngII+ISO) – ISO – AngII. 

One-site specific binding curve was fitted on the measured points using GraphPad 

Prism 4 Software (r2=0.9). 

 

Figure 5  

Different effects of an unbiased antagonist and a β-arrestin biased agonist on 

the function of the AT1R-β2AR heterodimer 

HEK 293T cells were transfected with plasmids encoding β2AR-Sluc, AT1R and β-

arrestin2-Venus (25 ng, 100 ng, 100 ng pro well, respectively). BRET ratio was 

measured after treatments with 10 µM ISO, 10 µM candesartan (A) and 1 µM 

TRV120023 (B). Data are mean±SEM, n=3. * means significant interaction between 

the treatments (p<0.05, Two-Way ANOVA).  

 

Figure 6 

Costimulation of AT1R and β2AR increases the duration of β-arrestin2 clusters 

HEK 293T cells were grown on glass coverslips, and were transfected with plasmids 

encoding β2AR-Cerulean, AT1R-Δ319 and β-arrestin2-Venus (1 µg, 4 µg, 0.5 µg pro 



well, respectively). 5 to 15 minutes after stimulation, 20 images were taken at the 

bottom of the cells every ten seconds by confocal laser-scanning microscope. A, 

Representative β-arrestin2 clusters at fist (Frame -9), tenth (Frame 0) and nineteenth 

(Frame +9) frames. The β-arrestin2 clusters were identified on the tenth (Frame 0) 

frame by the neuronal network algorithm, and followed through all the frames. The 

circles show the identified puncta on Frame 0, and corresponding clusters on Frame -

9 and Frame +9. Only some of the β-arrestin2 puncta remain through all the frames 

after ISO treatment. After AngII+ISO cotreatment, big fraction of β-arrestin2 puncta is 

apparent on all the frames, indicating increased lifespan of β-arrestin2 clusters. Scale 

bar 2 µm. B, Median lifespan of β-arrestin2-Venus puncta upon ISO or AngII+ISO 

treatment. After ISO and AngII+ISO treatment, the median durations of puncta in 

each cells (7222 from 40 cells and 6003 puncta from 35 cells, respectively, 3 

independent experiments) were determined. The median duration of clusters after 

ISO and AngII+ISO treatment was significantly different (p<0.001, analyzed with 

Student’s t-test). C, HEK 293T cells were transfected with plasma membrane 

targeted Venus, β-arrestin2-Rluc, untagged β2AR and β-arrestin binding deficient 

AT1R-Δ319. The plasma membrane target sequence was the first 10 amino acids of 

Lck, which is known to be myristoylated and palmitoylated. The nonspefic bystander 

BRET was measured, the increase of bystander BRET origins from the enrichment of 

β-arrestin2 at the plasma membrane after translocation to β2AR. 10 µM ISO and 100 

nM AngII were used as stimuli. Data are mean±SEM, n=3. * means significant 

interaction between ISO and AngII treatments (p<0.05, Two-Way ANOVA). 

 

Figure 7 

AT1R activation prolongs β2AR mediated cAMP signaling 

HEK 293T cells were cotransfected with AT1R and the BRET-based cAMP biosensor 

EPAC (100-100 ng pro well). BRET ratio was measured after ISO (10 µM), AngII 

(100 nM), TRV120023 (1 µM) treatments. BRET measurements were made in A, 

modified Kreb’s-Ringer medium or B, calcium-free modified Kreb’s-Ringer 

supplemented with 100 µM EGTA and with 200 nM thapsigargin. BRET ratios are 

expressed as the percent of the highest ISO induced BRET ratio change in modified 

Kreb’s-Ringer medium (100% EPAC response). Data are mean±SEM, n=3. C, EPAC 

responses after 15 minutes of stimulation are shown. Data are mean±SEM, n=3. * 

means significant interaction between ISO and AngII or TRV023 treatments (p<0.05, 

Two-Way ANOVA), # means significant difference between AngII+ISO and 

TRV023+ISO treatments examined by One-Way ANOVA with Bonferroni post hoc 

test. 

 

Figure 8 

Proposed model of the function of the AT1R - β2AR heterodimer  

The stimulation of β2AR leads to a weak interaction between the receptor and β-

arrestin. When AT1R is coactivated, AT1R allosterically modulates the β2AR and 

enhances its β-arrestin binding properties.  
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