91 research outputs found

    Effects of a dual CCR3 and H1-antagonist on symptoms and eosinophilic inflammation in allergic rhinitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CC-chemokine receptor-3 (CCR3) has emerged as a target molecule for pharmacological intervention in allergic inflammation.</p> <p>Objective</p> <p>To examine whether a dual CCR3 and H<sub>1</sub>-receptor antagonist (AZD3778) affects allergic inflammation and symptoms in allergic rhinitis.</p> <p>Methods</p> <p>Patients with seasonal allergic rhinitis were subjected to three seven days' allergen challenge series. Treatment with AZD3778 was given in a placebo and antihistamine-controlled design. Symptoms and nasal peak inspiratory flow (PIF) were monitored in the morning, ten minutes post challenge, and in the evening. Nasal lavages were carried out at the end of each challenge series and α<sub>2</sub>-macroglobulin, ECP, and tryptase were monitored as indices of allergic inflammation.</p> <p>Results</p> <p>Plasma levels of AZD3778 were stable throughout the treatment series. AZD3778 and the antihistamine (loratadine) reduced rhinitis symptoms recorded ten minutes post challenge during this period. AZD3778, but not the anti-histamine, also improved nasal PIF ten minutes post challenge. Furthermore, scores for morning and evening nasal symptoms from the last five days of the allergen challenge series showed statistically significant reductions for AZD3778, but not for loratadine. ECP was reduced by AZD3778, but not by loratadine.</p> <p>Conclusions</p> <p>AZD3778 exerts anti-eosinophil and symptom-reducing effects in allergic rhinitis and part of this effect can likely be attributed to CCR3-antagonism. The present data are of interest with regard to the potential use of AZD3778 in allergic rhinitis and to the relative importance of eosinophil actions to the symptomatology of allergic rhinitis.</p> <p>Trial registration</p> <p>EudraCT No: 2005-002805-21.</p

    IFN-Îł-inducible protein of 10 kDa upregulates the effector functions of eosinophils through ÎČ2 integrin and CXCR3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eosinophils play an important role in the pathogenesis of bronchial asthma and its exacerbation. Recent reports suggest the involvement of IFN-Îł-inducible protein of 10 kDa (IP-10) in virus-induced asthma exacerbation. The objective of this study was to examine whether CXCR3 ligands including IP-10 modify the effector functions of eosinophils.</p> <p>Methods</p> <p>Eosinophils isolated from the blood of healthy donors were stimulated with CXCR3 ligands and their adhesion to rh-ICAM-1 was then measured using eosinophil peroxidase assays. The generation of eosinophil superoxide anion (O<sub>2</sub><sup>-</sup>) was examined based on the superoxide dismutase-inhibitable reduction of cytochrome C. Eosinophil-derived neurotoxin (EDN) release was evaluated to determine whether CXCR3 ligands induced eosinophil degranulation. Cytokine and chemokine production by eosinophils was examined using a Bio-plex assay.</p> <p>Results</p> <p>Eosinophil adhesion to ICAM-1 was significantly enhanced by IP-10, which also significantly induced eosinophil O<sub>2</sub><sup>- </sup>generation in the presence of ICAM-1. Both the enhanced adhesion and O<sub>2</sub><sup>- </sup>generation were inhibited by an anti-ÎČ<sub>2 </sub>integrin mAb or an anti-CXCR3 mAb. Other CXCR3 ligands, such as monokine induced by IFN-Îł (Mig) and IFN-inducible T cell α chemoattractant (I-TAC), also induced eosinophil adhesion and O<sub>2</sub><sup>- </sup>generation in the presence of ICAM-1. IP-10, but not Mig or I-TAC, increased the release of EDN. IP-10 increased the production of a number of cytokines and chemokines by eosinophils.</p> <p>Conclusions</p> <p>These findings suggest that CXCR3 ligands such as IP-10 can directly upregulate the effector functions of eosinophils. These effects might be involved in the activation and infiltration of eosinophils in the airway of asthma, especially in virus-induced asthma exacerbation.</p

    Anti-tumor necrosis factor-Α antibody treatment reduces pulmonary inflammation and methacholine hyper-responsiveness in a murine asthma model induced by house dust

    Full text link
    Background/Aims Recent studies documented that sensitization and exposure to cockroach allergens significantly increase children's asthma morbidity as well as severity, especially among inner city children. TNF-Α has been postulated to be a critical mediator directly contributing to the bronchopulmonary inflammation and airway hyper-responsiveness in asthma. This study investigated whether an anti-TNF-Α antibody would inhibit pulmonary inflammation and methacholine (Mch) hyper-responsiveness in a mouse model of asthma induced by a house dust extract containing both endotoxin and cockroach allergens. Methods A house dust sample was extracted with phosphate-buffered saline and then used for immunization and two additional pulmonary challenges of BALB/c mice. Mice were treated with an intravenous injection of anti-TNF-Α antibody or control antibody 1  h before each pulmonary challenge. Results In a kinetic study, TNF-Α levels within the bronchoalveolar lavage (BAL) fluid increased quickly peaking at 2 h while BAL levels of IL-4, IL-5, and IL-13 peaked at later time-points. Mch hyper-responsiveness was measured 24 h after the last challenge, and mice were killed 24 h later. TNF inhibition resulted in an augmentation of these Th2 cytokines. However, the allergic pulmonary inflammation was significantly reduced by anti-TNF-Α antibody treatment as demonstrated by a substantial reduction in the number of BAL eosinophils, lymphocytes, macrophages, and neutrophils compared with rat IgG-treated mice. Mch hyper-responsiveness was also significantly reduced in anti-TNF-Α antibody-treated mice and the pulmonary histology was also significantly improved. Inhibition of TNF significantly reduced eotaxin levels within the lung, suggesting a potential mechanism for the beneficial effects. These data indicate that anti-TNF-Α antibody can reduce the inflammation and pathophysiology of asthma in a murine model of asthma induced by a house dust extract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73609/1/j.1365-2222.2005.02407.x.pd

    Prevalence of insulin resistance and its association with metabolic syndrome criteria among Bolivian children and adolescents with obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a one of the most common nutritional disorder worldwide, clearly associated with the metabolic syndrome, condition with implications for the development of many chronic diseases.</p> <p>In the poorest countries of Latin America, malnourishment is still the most prevalent nutritional problem, but obesity is emerging in alarming rates over the last 10 years without a predictable association with metabolic syndrome.</p> <p>The objective of our study was to determine the association between insulin-resistance and components of the metabolic syndrome in a group of Bolivian obese children and adolescents. The second objective was determining the relation of acanthosis nigricans and insulin-resistance.</p> <p>Methods</p> <p>We studied 61 obese children and adolescents aged between 5 and 18 years old. All children underwent an oral glucose tolerance test and fasting blood sample was also obtained to measure insulin, HDL, LDL and triglycerides serum level. The diagnosis of metabolic syndrome was defined according to National Cholesterol Education Program-Adult Treatment Panel (NCEP-ATP III) criteria adapted for children.</p> <p>Results</p> <p>Metabolic syndrome was found in 36% of the children, with a higher rate among males (40%) than females (32.2%) (p = 0.599). The prevalence of each of the components was 8.2% in impaired glucose tolerance, 42.6% for high triglyceride level, 55.7% for low levels of high-density lipoprotein cholesterol, and 24.5% for high blood pressure. Insulin resistance (HOMA-IR > 3.5) was found in 39.4% of the children, with a higher rate in males (50%) than females (29%). A strong correlation was found between insulin resistance and high blood pressure (p = 0.0148) and high triglycerides (p = 0.002). No statistical significance was found between the presence of acanthosis nigricans and insulin resistance.</p> <p>Conclusion</p> <p>Metabolic syndrome has a prevalence of 36% in children and adolescent population in the study. Insulin resistance was very common among children with obesity with a significant association with high blood pressure and high triglycerides presence.</p

    VLDL Hydrolysis by Hepatic Lipase Regulates PPARÎŽ Transcriptional Responses

    Get PDF
    PPARs (α,Îł,ÎŽ) are a family of ligand-activated transcription factors that regulate energy balance, including lipid metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic lipase (HL), an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown.Using PPAR ligand binding domain transactivation assays, we found that HL interacted with triglyceride-rich VLDL (>HDL≫LDL, IDL) to activate PPARÎŽ preferentially over PPARα or PPARÎł, an effect dependent on HL catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARÎŽ in a VLDL-concentration dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA expression of canonical PPARÎŽ target genes, including adipocyte differentiation related protein (ADRP), angiopoietin like protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%, demonstrating the importance of triglyceride substrate for HL-mediated PPARÎŽ activation. Global metabolite profiling identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARÎŽ activation and ADRP gene regulation in vitro.These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARÎŽ through generation of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic approaches provides insight into specific lipid mediators and pathways of lipid metabolism that regulate transcription

    Sp6 and Sp8 transcription factors control AER formation and dorsal-ventral patterning in limb development

    Get PDF
    The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6-/-;Sp8+/-) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/ÎČcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning

    Interdigital cell death in the embryonic limb is associated with depletion of Reelin in the extracellular matrix

    Get PDF
    Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process

    A systematic review of the diagnostic accuracy of physical examination for the detection of cirrhosis

    Get PDF
    BACKGROUND: We conducted a review of the diagnostic accuracy of clinical examination for the diagnosis of cirrhosis. The objectives were: to identify studies assessing the accuracy of clinical examination in the detection of cirrhosis; to summarize the diagnostic accuracy of reported physical examination findings; and to define the effects of study characteristics on estimates of diagnostic accuracy. METHODS: Studies were identified through electronic literature search of MEDLINE (1966 to 2000), search of bibliographic references, and contact with authors. Studies that evaluated indicants from physical examination of patients with known or suspected liver disease undergoing liver biopsy were included. Qualitative data on study characteristics were extracted. Two-by-two tables of presence or absence of physical findings for patients with and without cirrhosis were created from study data. Data for physical findings reported in each study were combined using Summary Receiver Operating Characteristic (SROC) curves or random effects modeling, as appropriate. RESULTS: Twelve studies met inclusion criteria, including a total of 1895 patients, ranging in age from 3 to 90 years. Most studies were conducted in referral populations with elevated aminotransferase levels. Ten physical signs were reported in three or more studies and ten signs in only a single study. Signs for which there was more study data were associated with high specificity (range 75–98%), but low sensitivity (range 15–68%) for histologically-proven cirrhosis. CONCLUSIONS: Physical findings are generally of low sensitivity for the diagnosis of cirrhosis, and signs with higher specificity represent decompensated disease. Most studies have been undertaken in highly selected populations

    Long-term decline of the Amazon carbon sink

    Get PDF
    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6
    • 

    corecore