69 research outputs found

    Daily MODIS 500 m Reflectance Anisotropy Direct Broadcast (DB) Products for Monitoring Vegetation Phenology Dynamics

    Get PDF
    Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest

    Daily MODIS 500 m Reflectance Anisotropy Direct Broadcast (DB) Products for Monitoring Vegetation Phenology Dynamics

    Get PDF
    Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest

    First operational BRDF, albedo nadir reflectance products from MODIS

    Get PDF
    With the launch of NASA’s Terra satellite and the MODerate Resolution Imaging Spectroradiometer (MODIS), operational Bidirectional Reflectance Distribution Function (BRDF) and albedo products are now being made available to the scientific community. The MODIS BRDF/Albedo algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model and multidate, multispectral data to provide global 1-km gridded and tiled products of the land surface every 16 days. These products include directional hemispherical albedo (black-sky albedo), bihemispherical albedo (white-sky albedo), Nadir BRDF-Adjusted surface Reflectances (NBAR), model parameters describing the BRDF, and extensive quality assurance information. The algorithm has been consistently producing albedo and NBAR for the public since July 2000. Initial evaluations indicate a stable BRDF/Albedo Product, where, for example, the spatial and temporal progression of phenological characteristics is easily detected in the NBAR and albedo results. These early beta and provisional products auger well for the routine production of stable MODIS-derived BRDF parameters, nadir reflectances, and albedos for use by the global observation and modeling communities

    On promoting the use of lidar systems in forest ecosystem research

    Get PDF
    Forest structure is an important driver of ecosystem dynamics, including the exchange of carbon, water and energy between canopies and the atmosphere. Structural descriptors are also used in numerous studies of ecological processes and ecosystem services. Over the last 20+ years, lidar technology has fundamentally changed the way we observe and describe forest structure, and it will continue to impact the ways in which we investigate and monitor the relations between forest structure and functions. Here we present the currently available lidar system types (ground, air, and space-based), we highlight opportunities and challenges associated with each system, as well as challenges associated with a wider use of lidar technology and wider availability of lidar derived products. We also suggest pathways for lidar to further contribute to addressing questions in forest ecosystem science and increase benefits to a wider community of researchers

    Waveform lidar over vegetation : An evaluation of inversion methods for estimating return energy

    Get PDF
    Full waveform lidar has a unique capability to characterise vegetation in more detail than any other practical method. The reflectance, calculated from the energy of lidar returns, is a key parameter for a wide range of applications and so it is vital to extract it accurately. Fifteen separate methods have been proposed to extract return energy (the amount of light backscattered from a target), ranging from simple to mathematically complex, but the relative accuracies have not yet been assessed. This paper uses a simulator to compare all methods over a wide range of targets and lidar system parameters. For hard targets the simplest methods (windowed sum, peak and quadratic) gave the most consistent estimates. They did not have high accuracies, but low standard deviations show that they could be calibrated to give accurate energy. This may be why some commercial lidar developers use them, where the primary interest is in surveying solid objects. However, simulations showed that these methods are not appropriate over vegetation. The widely used Gaussian fitting performed well over hard targets (0.24% root mean square error, RMSE), as did the sum and spline methods (0.30% RMSE). Over vegetation, for large footprint (15 m) systems, Gaussian fitting performed the best (12.2% RMSE) followed closely by the sum and spline (both 12.7% RMSE). For smaller footprints (33 cm and 1 cm) over vegetation, the relative accuracies were reversed (0.56% RMSE for the sum and spline and 1.37% for Gaussian fitting). Gaussian fitting required heavy smoothing (convolution with an 8 m Gaussian) whereas none was needed for the sum and spline. These simpler methods were also more robust to noise and far less computationally expensive than Gaussian fitting. Therefore it was concluded that the sum and spline were the most accurate for extracting return energy from waveform lidar over vegetation, except for large footprint (15 m), where Gaussian fitting was slightly more accurate. These results suggest that small footprint (≪ 15 m) lidar systems that use Gaussian fitting or proprietary algorithms may report inaccurate energies, and thus reflectances, over vegetation. In addition the effect of system pulse length, sampling interval and noise on accuracy for different targets was assessed, which has implications for sensor design

    The Use of Prior Probabilities in Maximum Likelihood Classification

    Get PDF
    The use of prior information about the expected distribution of classes in a final classification map can be used to improve classification accuracies. Prior information is incorporated through the use of prior probabilities--that is, probabilities of occurrence of classes which are based on separate, independent knowledge concerning the area to be classified. The use of prior probabilities in a classification system is sufficiently versatile to allow (1) prior weighting of output classes based on their-anticipated sizes; (2) the merging of continuously varying measurements (multispectral signatures) with discrete collateral information data sets (e.g., rock type, soil type); and (3) the construction of time-sequential classification systems in which an earlier classification modifies the outcome of a later one. The prior probabilities are incorporated by modifying the maximum likelihood decision rule employed in a Bayesian-type classifier to calculate 3 posteriori probabilities of class membership which are based not only on the resemblance of a pixel to the class signature, but also on the weight of the class which is estimated for the final output classification. In the merging of discrete collateral information with continuous spectral values into a single classification, a set of prior probabilities (weights) is estimated for each value which the discrete collateral variable may assume (e.g., each rock type or soil type). When maximum likelihood calculations are performed, the prior probabilities appropriate to the particular pixel are used in classification. For time-sequential classification, the prior classification of a pixel indexes a set of appropriate conditional probabilities reflecting the confidence of the investigator in the prior classification

    Instructor's manual for modern physical geography

    No full text
    iv, 238 p.; 28 cm

    Forest Stand Delineation from Unsupervised Classification of Optimal Landsat Spectral, Landsat Texture and Topographic Channels

    Get PDF
    Landsat data, in conjunction with collateral data sources such as synthesized texture channels and digital terrain models, can be used to delineate forest stands and other ecological land units found in the coniferous North American forest environment. Incorporation of texture and terrain channels enhances site-specific stratification of Landsat data, promoting delineation of forest stand units of a size and homogeneity approaching those found on manually prepared maps used in the management of timber, range, wildlife, watershed and recreational resources. The procedure is a joint research effort between the Jet Propulsion Laboratory of the California Institute of Technology and the University of California at Santa Barbara. The classification approach includes 1) compressing Landsat spectral data into one or two new channels of data using ratio and principle components techniques; 21 generating two texture measures where one channel emphasizes tonal contrast derived from statistical texture techniques and the other emphasizes spatial extent and shape using image segmentation procedures; 3) processing National Cartographic Information Center -- U.S. Geological Survey Digital Terrain information into elevation, slope and aspect channels; 4) reducing the number of synthesized channels by using divergence analysis to identify channels not contributing significantly to the separation of preliminary training classes; 5) introducing spatial constraints by including line and sample coordinates into the unsupervised classification algorithm; and 6) properly weighting selected spectral, texture and terrain channels such that no single data set overpowers the others in unsupervised classification. The combination of spectral tone, tonal texture, spatial texture, topographic data and line and sample location coordinates, is likely to be sufficient for the stand delineation task because each contributes a separate, independent piece of information towards the stand delineation problem. Spectral tone is most important for recognizing the existence of a feature and combines with the topographic data to provide species information. Tonal texture measures the neighborhood contrast of spectral tones providing an indication of relative timber volume. Spatial texture stratifies tone to quantify the spatial extent and shape of tonal patterns. The topographic information provides a powerful independent parameter well known to improve forest classification accuracies because of its ecological predictive effect. Inclusion of line and sample coordinates introduces a strong spatial constraint designed to permit analyst regulation over the automatic merging of distant and unrelated, but similar appearing features. Target area for generation of maps delineating forest stands and related ecological land units is the 220 square kilometer Doggett Creek watershed located in the Klamath National Forest of northern California. The mountainous topography ranges from 500 to 2100 meters in elevation, and bears a variety of important coniferous timber types including douglas fir, ponderosa pine, white and red fir, and several miscellaneous hardwoods such as black oak and madrone

    Environmental geoscience : Interaction between natural systems and man

    No full text
    ix, 575 p.; 27 cm
    • …
    corecore