314 research outputs found

    The mechanisms of leukocyte removal by filtration

    Get PDF

    A Modified Protocol for Bisulfite Genomic Sequencing of Difficult Samples

    Get PDF
    The bisulfite genomic sequencing protocol is a widely used method for analyzing DNA methylation. It relies on the deamination of unmethylated cytosine residues to uracil; however, its high rates of DNA degradation and incomplete cytosine to uracil conversion often lead to failed experiments, uninformative results, and false positives. Here, we report the addition of a single-step multiple restriction enzyme digestion (MRED) designed to differentially digest polymerase chain reaction products amplified from unconverted DNA while leaving those of converted DNA intact. We show that for our model system, RARB2 P2 promoter, use of MRED increased informative sequencings ninefold, and MRED did not alter the clonal representation in one fully methylated cell line, H-596, treated or not with 5-azadeoxycytidine, a methylation inhibitor. We believe that this method may easily be adapted for analyzing other genes and provide guidelines for selecting the most appropriate MRED restriction enzymes

    Derangement of a Factor Upstream of RARα Triggers the Repression of a Pleiotropic Epigenetic Network

    Get PDF
    Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha), can impair the integration of the retinoic acid (RA) signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha.To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2), which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function.Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes

    DNA Methylation in the Diagnosis of Monogenic Diseases.

    Get PDF
    DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results

    Misbehaviour of XIST RNA in Breast Cancer Cells

    Get PDF
    A role of X chromosome inactivation process in the development of breast cancer have been suggested. In particular, the relationship between the breast cancer predisposing gene BRCA1 and XIST, the main mediator of X chromosome inactivation, has been intensely investigated, but still remains controversial. We investigated this topic by assessing XIST behaviour in different groups of breast carcinomas and in a panel of breast cancer cell lines both BRCA1 mutant and wild type. In addition, we evaluated the occurrence of broader defects of heterochromatin in relation to BRCA1 status in breast cancer cells. We provide evidence that in breast cancer cells BRCA1 is involved in XIST regulation on the active X chromosome, but not in its localization as previously suggested, and that XIST can be unusually expressed by an active X and can decorate it. This indicates that the detection of XIST cloud in cancer cell is not synonymous of the presence of an inactive X chromosome. Moreover, we show that global heterochromatin defects observed in breast tumor cells are independent of BRCA1 status. Our observations sheds light on a possible previously uncharacterized mechanism of breast carcinogenesis mediated by XIST misbehaviour, particularly in BRCA1-related cancers. Moreover, the significant higher levels of XIST-RNA detected in BRCA1-associated respect to sporadic basal-like cancers, opens the possibility to use XIST expression as a marker to discriminate between the two groups of tumors
    • …
    corecore