132 research outputs found

    EVALUACIÓN DE RASGOS FUNCIONALES DE Quercus humboldtii Bonpl. EN BOSQUE NATURAL Y ARBOLADO URBANO

    Get PDF
    Se ha observado que las especies forestales desarrollan adaptaciones anatómicas respondiendo a los cambios ambientales, el género Quercus especialmente, presenta características de resistencia a las sequías. En este estudio se compararon los rasgos funcionales relacionados con la conducción hidráulica como el diámetro y la frecuencia de poros, diámetro de punteaduras, espesor de la pared de las fibras y la conductividad hidráulica teórica en 16 individuos de bosque natural y arbolado urbano. Se encontraron diferencias significativas en las dos zonas en la mayoría de variables estudiadas, excepto en el diámetro de las punteaduras, estas diferencias responden a condiciones biofísicas propias en cada área de estudio, encontrando que de acuerdo a las características anatómicas del xilema, la capacidad de conductividad hidráulica de los individuos es mejor en los árboles de bosque natural que en los árboles de ciudad al igual que la resistencia al embolismo.&nbsp

    Influence of Medium Viscosity and Intracellular Environment on the Magnetization of Superparamagnetic Nanoparticles in Silk Fibroin Solutions and 3T3 Mouse Fibroblast Cell Cultures

    Full text link
    IOP also requests that you include the following statement of provenance: "This is an author-created, un-copyedited versíon of an article published in Nanotechnology. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at https://doi.org/10.1088/1361-6528/aacf4a.[EN] Biomedical applications based on the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) may be altered by the mechanical attachment or cellular uptake of these nanoparticles. When nanoparticles interact with living cells, they are captured and internalized into intracellular compartments. Consequently, the magnetic behavior of the nanoparticles is modified. In this paper, we investigated the change in the magnetic response of 14 nm magnetic nanoparticles (Fe3O4) in different solutions, both as a stable liquid suspension (one of them mimicking the cellular cytoplasm) and when associated with cells. The field-dependent magnetization curves from inert fluids and cell cultures were determined by using an alternating gradient magnetometer, MicroMagTM 2900. The equipment was adapted to measure liquid samples because it was originally designed only for solids. In order to achieve this goal, custom sample holders were manufactured. Likewise, the nuclear magnetic relaxation dispersion profiles for the inert fluid were also measured by fast field cycling nuclear magnetic relaxation relaxometry. The results show that SPION magnetization in inert fluids was affected by the carrier liquid viscosity and the concentration. In cell cultures, the mechanical attachment or confinement of the SPIONs inside the cells accounted for the change in the dynamic magnetic behavior of the nanoparticles. Nevertheless, the magnetization value in the cell cultures was slightly lower than that of the fluid simulating the viscosity of cytoplasm, suggesting that magnetization loss was not only due to medium viscosity but also to a reduction in the mechanical degrees of freedom of SPIONs rotation and translation inside cells. The findings presented here provide information on the loss of magnetic properties when nanoparticles are suspended in viscous fluids or internalized in cells. This information could be exploited to improve biomedical applications based on magnetic properties such as magnetic hyperthermia, contrast agents and drug delivery.The authors are thankful to their supporters: a grant from Universidad Politecnica de Madrid to Ana Lorena Urbano-Bojorge and a grant from Universidad Nacional Experimental del Tachira (UNET)- Venezuela to Oscar Casanova-Carvajal. This study was also financially supported in part by CIBER-BBN (Spain) and Madr.ib-CM (Spain).Urbano-Bojorge, AL.; Casanova-Carvajal, O.; González, N.; Fernández, L.; Madurga, R.; Sánchez-Cabezas, S.; Aznar, E.... (2018). Influence of Medium Viscosity and Intracellular Environment on the Magnetization of Superparamagnetic Nanoparticles in Silk Fibroin Solutions and 3T3 Mouse Fibroblast Cell Cultures. Nanotechnology. 29(38):1-13. https://doi.org/10.1088/1361-6528/aacf4aS113293

    An iridium oxide nanoparticle and polythionine thin film based platform for sensitive Leishmania DNA detection

    Get PDF
    An impedimetric label-free genosensor for high sensitive DNA detection is developed. This system is based on a screen-printed carbon electrode modified with the thionine layer and iridium oxide nanoparticles (IrO₂ NP/). An aminated oligonucleotide probe is immobilized on the IrO₂ NP/polythionine modified electrode and ethanolamine was used as a blocking agent. Different diluted PCR amplified DNA samples have been detected. The selectivity and reproducibility of this system are studied and the system was highly reproducible with RSD ≈ 15% and sensitive enough while using 2% of ethanolamine during the blocking step employed for genosensor preparation

    Influence of Medium Viscosity and Intracellular Environment on the Magnetization of Superparamagnetic Nanoparticles in Silk Fibroin Solutions and 3T3 Mouse Fibroblast Cell Cultures

    Full text link
    IOP also requests that you include the following statement of provenance: "This is an author-created, un-copyedited versíon of an article published in Nanotechnology. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at https://doi.org/10.1088/1361-6528/aacf4a.[EN] Biomedical applications based on the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) may be altered by the mechanical attachment or cellular uptake of these nanoparticles. When nanoparticles interact with living cells, they are captured and internalized into intracellular compartments. Consequently, the magnetic behavior of the nanoparticles is modified. In this paper, we investigated the change in the magnetic response of 14 nm magnetic nanoparticles (Fe3O4) in different solutions, both as a stable liquid suspension (one of them mimicking the cellular cytoplasm) and when associated with cells. The field-dependent magnetization curves from inert fluids and cell cultures were determined by using an alternating gradient magnetometer, MicroMagTM 2900. The equipment was adapted to measure liquid samples because it was originally designed only for solids. In order to achieve this goal, custom sample holders were manufactured. Likewise, the nuclear magnetic relaxation dispersion profiles for the inert fluid were also measured by fast field cycling nuclear magnetic relaxation relaxometry. The results show that SPION magnetization in inert fluids was affected by the carrier liquid viscosity and the concentration. In cell cultures, the mechanical attachment or confinement of the SPIONs inside the cells accounted for the change in the dynamic magnetic behavior of the nanoparticles. Nevertheless, the magnetization value in the cell cultures was slightly lower than that of the fluid simulating the viscosity of cytoplasm, suggesting that magnetization loss was not only due to medium viscosity but also to a reduction in the mechanical degrees of freedom of SPIONs rotation and translation inside cells. The findings presented here provide information on the loss of magnetic properties when nanoparticles are suspended in viscous fluids or internalized in cells. This information could be exploited to improve biomedical applications based on magnetic properties such as magnetic hyperthermia, contrast agents and drug delivery.The authors are thankful to their supporters: a grant from Universidad Politecnica de Madrid to Ana Lorena Urbano-Bojorge and a grant from Universidad Nacional Experimental del Tachira (UNET)- Venezuela to Oscar Casanova-Carvajal. This study was also financially supported in part by CIBER-BBN (Spain) and Madr.ib-CM (Spain).Urbano-Bojorge, AL.; Casanova-Carvajal, O.; González, N.; Fernández, L.; Madurga, R.; Sánchez-Cabezas, S.; Aznar, E.... (2018). Influence of Medium Viscosity and Intracellular Environment on the Magnetization of Superparamagnetic Nanoparticles in Silk Fibroin Solutions and 3T3 Mouse Fibroblast Cell Cultures. Nanotechnology. 29(38):1-13. https://doi.org/10.1088/1361-6528/aacf4aS113293

    Differential clinicopathological and molecular features within late-onset colorectal cancer according to tumor location

    Get PDF
    Background: Since there is a predilection of some clinical and molecular features for a given tumor location, we assessed whether this can be confirmed in late-onset colorectal cancer (LOCRC). Results: Right colon cancers showed features associated with sporadic Microsatellite Instability: predominance of female cases and BRAF mutations, and an important mucinous component. Left colon cancers developed a higher number of polyps and multiple primary CRCs, showed the strongest familial component, and had better prognosis. Rectal cancers showed a predominantly sporadic phenotype, with worse prognosis and a CpG Island Methylator Phenotype (CIMP)-High. No copy number alterations (CNAs) greater than or equal to 50% were observed in this LOCRC group, and the most recurrent alterations were losses at 5q13 and 14q11, and gains at 7q11, 7q21-q22, 19p13-p12, 19q13 and 20p11-q11. KRAS and PIK3CA were the only mutated genes showing differences according to the tumor location, mainly for right colon cancers. Materials and Methods: We analyzed clinical and molecular characteristics of LOCRC at different tumor locations in order to determine if there are differential phenotypes related with the location in the colon. Conclusions: Categorizing LOCRC according to tumor location appears to be an adequate first step to resolving the heterogeneity of this subset of CRCThis work was funded by Projects PI10/0683, PI13/01741, PI13/0127 and PI14/00459 from the Spanish Ministry of Health and Consumer Affairs and FEDER, and was approved by the Ethics Committee of our Institutio

    Protein Translation Inhibition is Involved in the Activity of the Pan-PIM Kinase Inhibitor PIM447 in Combination with Pomalidomide-Dexamethasone in Multiple Myeloma

    Get PDF
    Background: Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. Methods: Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. Results: Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. Conclusions: Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.This work was supported by funding from Spanish FIS (PI15/00067, PI15/02156 and PI18/01600) and FEDER, AECC (GCB120981SAN), Junta de Castilla y León, Consejería de Sanidad (GRS 862/A/13 and BIO/SA05/14), Fundación Memoria de D. Samuel Solórzano Barruso of the University of Salamanca (FS/22-2015), Fundación Ramón Areces (FRA16/003), Sociedad Española de Hematología y Hemoterapia and Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León. E.M.O. was supported by an Inplant grant from IDIVAL. T.P. is supported by a grant from AECC (INVES18043PAÍN)

    Synergistic DNA-damaging effect in multiple myeloma with the combination of zalypsis, bor tezomib and dexamethasone

    Get PDF
    Despite new advances in multiple myeloma treatment and the consequent improvement in overall survival, most patients relapse or become refractory to treatment. This suggests that new molecules and combinations that may further inhibit important survival pathways for these tumor cells are needed. In this context, zalypsis is a novel compound, derived from marine organisms, with a powerful preclinical anti-myeloma effect based on the sensitivity of malignant plasma cells to DNA-damage induction; and it has already been tested in a phase I/II clinical trial in multiple myeloma. We hypothesized that the addition of this compound to the combination of bortezomib plus dexamethasone may improve efficacy with acceptable toxicity. The triple combination demonstrated strong synergy and higher efficacy compared with double combinations; not only in vitro, but also ex vivo and, especially, in in vivo experiments. The triple combination triggers cell death, mainly through a synergistic induction of DNA damage and a decrease in the nuclear localization of nuclear factor kappa B. Our findings support the clinical evaluation of this combination for relapsed and refractory myeloma patients.This work was in part funded by the Spanish ISCIII-FIS (PI 15/0067 and PI15/02156) and FEDER, the Spanish RTICC (RD12/0036/0058), "Asociación Española Contra el Cancer" (AECC, GCB120981SAN), the regional Council from “Castilla y León” (GRS 1175/A/15 and FIC335U14) and a research grant from Pharmamar SAU. MMS were also supported by the Network of Centers for Regenerative Medicine and Cellular Therapy from Castilla y León, Spain. A-A López-Iglesias was supported by a grant from the Spanish Society of Hematology and Hemotherapy.Peer Reviewe

    The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma

    Get PDF
    [EN]Kinesin spindle protein inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (ARRY-520), an inhibitor of this protein, has demonstrated activity in heavily pre-treated multiple myeloma patients. The aim of the work herein was to investigate the activity of filanesib in combination with pomalidomide plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. The ability of filanesib to enhance the activity of pomalidomide plus dexamethasone was studied in several in vitro and in vivo models. Mechanisms of this synergistic combination were dissected by gene expression profiling, immunostaining, cell cycle and short interfering ribonucleic acid studies. Filanesib showed in vitro, ex vivo, and in vivo synergy with pomalidomide plus dexamethasone treatment. Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and was shown to be mediated by the impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, the triple combination increased the activation of the proapoptotic protein BAX, which has previously been associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone, and supported the initiation of a recently activated trial being conducted by the Spanish Myeloma group which is investigating this combination in relapsed myeloma patients.Array BioPharma, the Spanish ISCIII-FIS and FEDER, the Spanish RTICC, Spanish Association Against Cancer (AECC) and the Regional Council of Castilla y León (Consejería de Medicina y Educación)

    Stroma-Mediated Resistance to S63845 and Venetoclax through MCL-1 and BCL-2 Expression Changes Induced by miR-193b-3p and miR-21-5p Dysregulation in Multiple Myeloma.

    Get PDF
    BH3-mimetics targeting anti-apoptotic proteins such as MCL-1 (S63845) or BCL-2 (venetoclax) are currently being evaluated as effective therapies for the treatment of multiple myeloma (MM). Interleukin 6, produced by mesenchymal stromal cells (MSCs), has been shown to modify the expression of anti-apoptotic proteins and their interaction with the pro-apoptotic BIM protein in MM cells. In this study, we assess the efficacy of S63845 and venetoclax in MM cells in direct co-culture with MSCs derived from MM patients (pMSCs) to identify additional mechanisms involved in the stroma-induced resistance to these agents. MicroRNAs miR-193b-3p and miR-21-5p emerged among the top deregulated miRNAs in myeloma cells when directly co-cultured with pMSCs, and we show their contribution to changes in MCL-1 and BCL-2 protein expression and in the activity of S63845 and venetoclax. Additionally, direct contact with pMSCs under S63845 and/or venetoclax treatment modifies myeloma cell dependence on different BCL-2 family anti-apoptotic proteins in relation to BIM, making myeloma cells more dependent on the non-targeted anti-apoptotic protein or BCL-XL. Finally, we show a potent effect of the combination of S63845 and venetoclax even in the presence of pMSCs, which supports this combinatorial approach for the treatment of MM

    First insights into the prokaryotic community structure of Lake Cote, Costa Rica: influence on nutrient cycling

    Get PDF
    This article is part of the Research Topic: Rising Stars in Aquatic Microbiology: 2022Prokaryotic diversity in lakes has been studied for many years mainly focusing on community structure and how the bacterial assemblages are driven by physicochemical conditions such as temperature, oxygen, and nutrients. However, little is known about how the composition and function of the prokaryotic community changes upon lake stratification. To elucidate this, we studied Lake Cote in Costa Rica determining prokaryotic diversity and community structure in conjunction with physicochemistry along vertical gradients during stratification and mixing periods. Of the parameters measured, ammonium, oxygen, and temperature, in that order, were the main determinants driving the variability in the prokaryotic community structure of the lake. Distinct stratification of Lake Cote occurred (March 2018) and the community diversity was compared to a period of complete mixing (March 2019). The microbial community analysis indicated that stratification significantly altered the bacterial composition in the epi-meta- and hypolimnion. During stratification, the Deltaproteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Euryarchaeota were dominant in the hypolimnion yet largely absent in surface layers. Among these taxa, strict or facultative anaerobic bacteria were likely contributing to the lake nitrogen biogeochemical cycling, consistent with measurements of inorganic nitrogen measurements and microbial functional abundance predictions. In general, during both sampling events, a higher abundance of Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Cyanobacteria was found in the oxygenated layers. Lake Cote had a unique bacterial diversity, with 80% of Amplicon Sequence Variant (ASV) recovered similar to unclassified/uncultured strains and exhibits archetypal shallow lake physicochemical but not microbial fluctuations worthy of further investigation. This study provides an example of lake hydrodynamics impacts to microbial community and their function in Central American lakes with implications for other shallow, upland, and oligotrophic lake systems
    corecore