46 research outputs found

    Oyster recruitment and climate change: do higher summer temperatures mean earlier and greater settlement in Pacific oysters?

    Get PDF
    Pacific oysters (Crassostrea gigas) are an economically beneficial product of the Pacific Northwest, introduced in the 1920s. In the 1940s governments initiated studies on the status and health of oysters in Pendrell Sound, BC (1949-1981) and Hood Canal WA (1942-1995). Seasonal surveys collected information on Pacific oyster settlement and timing through regular placement of spat collectors, usually clean shells. Simultaneously, water temperature was recorded. Because of temperatures in native ranges, reproduction in Pacific oysters is expected to improve in warmer years. Further, reproduction tends to be spatially limited to these two regions of the Salish Sea, where water temperatures can exceed 20° C in the summer. At some sites within regions, maximum seasonal recruitment ranged from less than 55 to nearly 10,000 per shell across summers, with peak timing that ranged from early July to early September. Pacific oysters tended to have earlier and higher settlement in warmer summers. The long term contribution of recruitment to feral populations and commercial stocks will hinge on temperature trends as well as interannual variability

    Multi-day water residence time as a mechanism for physical and biological gradients across intertidal flats

    Get PDF
    Tidal flats with shallow-sloping bathymetry under meso-to macrotidal conditions allow organisms to occupy similar tidal elevations at different distances from subtidal channels. As water floods or ebbs across such tidal flats during a single tidal cycle, upstream organisms may modify water properties such as chlorophyll concentration, while physiochemical properties may change due to close association with sediments. Here we report evidence for an additional mechanism establishing cross-shore gradients: multi-day water residence times, in the sense that even if water completely drains into subtidal channels at low tide, a large fraction returns to the flats on the next high tide. We applied circulation modeling and empirical measurements of water properties and benthic secondary production to a 1-km-wide tidal flat in Willapa Bay, Washington, USA. From the circulation model, water parcels on this intertidal flat have residence times up to 2 d, that is, water found on the flat at one high tide returns to the intertidal zone for a median of 4 successive semidiurnal high tides. Modeled residence times generally increased towards shore. Four empirical datasets showed cross-shore gradients consistent with modeled residence times: Salinity time series lagged towards shore; water column chlorophyll declined towards shore at fixed stations (near-bottom) and in surface transects more than could be explained by benthic suspension-feeding during a single transit of water; and oyster (Magallana = Crassostrea gigas) condition declined 25% over 0.5 km from channel to shore, independent of tidal elevation. One environmental measurement was more consistent with within-tide change, as water temperatures warmed towards shore on afternoon flood tides but showed no tidal-cycle lags. Taken together, these patterns suggest that multi-day water residence times can contribute to environmental heterogeneity from channel to shore on tidal flats, acting orthogonally to well-recognized estuarine gradients in residence time from ocean to river

    Comparison of shallow-water seston among biogenic habitats on tidal flats

    Get PDF
    Aquatic structure-formers have the potential to establish mosaics of seston in shallow water if they modify the relative amounts of deposition (or filtration) and resuspension of particles. By sampling surface water adjacent to Lagrangian drifters traveling 0.1 to 2 m above the bottom, we tested the modification of seston in water masses flowing over two biogenic marine species (native eelgrass, Zostera marina; introduced oysters, Crassostrea gigas) in comparison to unstructured tidal flats. Water properties were examined at five intertidal sites in Washington State, USA, each with 27 drifts (three drifts at different stages of the tidal cycle in each of three patches of three habitat types; drift distance 116 m (109SD), duration 24 min (15SD)). At the initiation of each drift, habitat differences in water properties were already apparent: chlorophyll-a and total suspended solid (TSS) concentrations were greater in structured habitats than bare, and TSS was also inversely related to water depth. Water flowed more slowly across eelgrass than other habitat types. As water flowed across each habitat type, TSS generally increased, especially in shallow water, but without habitat differences; chlorophyll-a in these surface-water samples showed no consistent change during drifts. At higher TSS concentrations, quality in terms of organic content declined, and this relationship was not habitat-specific. However, quality in terms of chlorophyll-a concentration increased with TSS, as well as being greater in water over eelgrass than over other habitat types. These results support widespread mobilization of seston in shallow water ebbing or flooding across Washington State’s tidal flats, especially as water passes into patches of biogenic species

    Historical ecology with real numbers: past and present extent and biomass of an imperiled estuarine habitat

    Get PDF
    Historic baselines are important in developing our understanding of ecosystems in the face of rapid global change. While a number of studies have sought to determine changes in extent of exploited habitats over historic timescales, few have quantified such changes prior to late twentieth century baselines. Here, we present, to our knowledge, the first ever large-scale quantitative assessment of the extent and biomass of marine habitat-forming species over a 100-year time frame. We examined records of wild native oyster abundance in the United States from a historic, yet already exploited, baseline between 1878 and 1935 (predominantly 1885–1915), and a current baseline between 1968 and 2010 (predominantly 2000–2010). We quantified the extent of oyster grounds in 39 estuaries historically and 51 estuaries from recent times. Data from 24 estuaries allowed comparison of historic to present extent and biomass. We found evidence for a 64 per cent decline in the spatial extent of oyster habitat and an 88 per cent decline in oyster biomass over time. The difference between these two numbers illustrates that current areal extent measures may be masking significant loss of habitat through degradation

    A Pleistocene legacy structures variation in modern seagrass ecosystems

    Get PDF
    Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass ( Zostera marina ), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems

    Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere

    Get PDF
    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions

    A Pleistocene legacy structures variation in modern seagrass ecosystems

    Get PDF
    Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.This work was supported by the US NSF (OCE-1031061, OCE-1336206, OCE0-1336741, OCE-1336905) and the Smithsonian Institution. F.T. was supported by JosĂ© Castillejo Award CAS14/00177. A.H.E. was supported by the FCT (Foundation for Science and Technology) through Project UIDB/04326/2020 and Contract CEECINST/00114/2018. This is Contribution 106 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network and Contribution 4105 of the Virginia Institute of Marine Science, College of William & Mary

    Supplementary material from "The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans"

    Get PDF
    While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.This research was funded by National Science Foundation grants to J.E.D., J.J.S. and K.A.H. (NSF-OCE 1336206, OCE 1336905, and OCE 1336741). C.B. was funded by the Åbo Akademi University Foundation.Peer reviewe
    corecore