	1
	2
	3 Multi-day water residence time as a mechanism for physical and biological gradients
	4 across intertidal flats
	5
	6
	7
	8 Elizabeth E. Wheat ¹ , Neil S. Banas ² , Jennifer L. Ruesink ³ *
	9
1	¹ Program on the Environment, University of Washington, Box 355679, Seattle,
1	1 Washington, 98195-5679
1	² Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1
1	3 1XQ, UK
1	³ Department of Biology, University of Washington, Box 351800, Seattle, Washington,
1	5 98195-1800 USA
1	6 *Corresponding author: ruesink@u.washington.edu
1	7

19 Abstract

Tidal flats with shallow-sloping bathymetry under meso- to macrotidal conditions allow organisms to occupy similar tidal elevations at different distances from subtidal channels. As water floods or ebbs across such tidal flats during a single tidal cycle, upstream organisms may modify water properties such as chlorophyll concentration, while physiochemical properties may change due to close association with sediments. Here we report evidence for an additional mechanism establishing cross-shore gradients: multi-day water residence times, in the sense that even if water completely drains into subtidal channels at low tide, a large fraction returns to the flats on the next high tide. We applied circulation modeling and empirical measurements of water properties and benthic secondary production to a 1-km-wide tidal flat in Willapa Bay, Washington, USA. From the circulation model, water parcels on this intertidal flat have residence times up to 2 d, that is, water found on the flat at one high tide returns to the intertidal zone for a median of 4 successive semidiurnal high tides. Modeled residence times generally increased towards shore. Four empirical datasets showed cross-shore gradients consistent with modeled residence times: Salinity time series lagged towards shore; water column chlorophyll declined towards shore at fixed stations (near-bottom) and in surface transects more than could be explained by benthic suspension-feeding during a single transit of water; and oyster (*Magallana = Crassostrea gigas*) condition declined 25% over 0.5 km from channel to shore, independent of tidal elevation. One environmental measurement was more consistent with within-tide change, as water temperatures warmed towards shore on afternoon flood tides but showed no tidal-cycle lags. Taken together, these patterns suggest that multi-day water residence times can

contribute to environmental heterogeneity from channel to shore on tidal flats, acting orthogonally to well-recognized estuarine gradients in residence time from ocean to river.

Keywords: benthic suspension feeders; circulation model; Crassostrea gigas; intertidal gradients; residence time; water column chlorophyll

1 Introduction

Coastal-plain estuaries and tidal embayments typically show systematic variation in residence time and water age along the main axis from ocean mouth to head. The along-channel residence-time gradient, which summarizes the net effect of various circulation and mixing processes over a number of tidal cycles, broadly impacts biological and biogeochemical estuarine dynamics. Increased residence time increases the fraction of nitrogen that is denitrified (Dettmann, 2001), modifies sediment grain size (Wiberg et al., 2015), reduces larval dispersal (Abelson and Denny, 1997), and results in reductions of water column chlorophyll (Alpine and Cloern, 1992; Dame and Prins, 1998; Banas et al., 2007). In estuaries with broad intertidal areas, it is much less common to analyze cross-shore gradients (from the main channel to shore across a tidal flat) in terms of residence time, as opposed to other schemas like tidal elevation or wave exposure. One might well assume, in fact, that the residence time of the intertidal zone is, by definition, at most a few hours, between one flood tide and the next ebb, and therefore simply not commensurate with the multi-day residence times commonly seen on larger scales and in deeper water. This study combines observations in Willapa Bay, Washington, USA

residence-time gradients provide a key mechanism for gradients in water properties and secondary production across an intertidal mudflat. An earlier model of Willapa Bay (Banas and Hickey, 2005; Banas et al., 2007) predicted strong residence-time gradients orthogonal to the estuarine axis, but those studies did not have a means to validate that finding, or explore its biological implications. These gradients did not reflect zonation associated with tidal elevation, but rather a circulation pattern in which a large fraction of the water that ebbs off a flat into the main channel returns on the subsequent flood tide, and in which the fraction returned is greater for water found close to shore at high tide. Such small-scale variation in residence time may influence the productivity of benthic organisms that depend on delivery of water column resources. Energy budgets for Pacific oysters (*Magallana* = *Crassostrea gigas* Thunberg), as well as statistical models relating ovster growth to environmental conditions, reveal strong effects of food resources (Ren and Ross, 2001; Gangnery et al., 2003), water flow (Lenihan et al., 1996), temperature, and salinity (Brown and Hartwick, 1988; Whyte et al., 1990; Ruiz et al., 1992). Food quantity changes dynamically as particle concentrations are reduced through grazing or increased through cell division or resuspension of benthic particles. At small scales, individual performance may thus decline as density of benthic suspension-feeders increases (Peterson and Black, 1987), and at larger scales those individuals that are downstream may experience lower particle concentrations because upstream individuals have already removed some (Grizzle et al., 2008).

with semi-idealized numerical modeling to present a counterexample, in which

Intertidal zonation in soft sediments is well established (Peterson, 1991; Dittman, 2000; Ryu et al., 2011), as is the effect of immersion time on performance within species (e.g. bivalves Ruesink et al., 2003; Bishop and Peterson, 2006; Tomiyama et al., 2010; Walles et al., 2016; Lomovasky et al., 2018). Yet in addition to the manifest ramifications of how long water covers a particular intertidal point, the properties of that water also shape the environmental context experienced by organisms. Thus an understanding of the circulation and retention of water on tidal flats, which may underlie heterogeneous water properties, becomes essential. An important distinction is illustrated conceptually in Fig. 1. For water crossing a tidal flat during a single incoming tide, water column resources may be filtered out during passage across beds of suspension-feeders, resulting in downstream individuals with lower resource availability (Fig. 1a). However, from a tidally-averaged perspective, some parcels of water may be influenced by benthic suspension-feeders over multiple tides, and those portions of the tidal flat with longer residence times may consequently have depleted water column resources (Fig. 1b). In addition to enhancing gradients in some water properties through longer interactions with the benthos, water residence time on tidal flats has the potential to generate lags in conservative tracers. During summer conditions of low riverflow, especially at the mouth of Willapa Bay, salinity varies primarily due to the source water that is tidally advected from the ocean, with salinity rising during upwelling, and falling during downwelling (Roegner et al., 2002; Hickey et al., 2002; Ruesink et al., 2015). Overall, water that has experienced an extended residence time could therefore be higher or lower in salinity than "newer" water, depending on its origins during upwelling or

281 282		
283 284	110	downwelling conditions. High residence time should consistently lead to warmer water
285 286	111	in summer, due to solar heating of dark tidal flats (Harrison and Phizacklea, 1987;
287 288	112	Hickey and Banas, 2003).
289 290	113	In this paper we contribute evidence that the retention of water over multiple
291 292 203	114	tidal cycles, combined with the feeding activity of suspension-feeders, causes food
293 294 295	115	limitation in the intertidal zone, thus affecting secondary production. Oyster growers
296 297	116	respond to spatial variation in oyster growth at our study site by moving oysters in the
298 299	117	intertidal zone from shore to channel for fattening (improved meat weight; Hedgpeth
300 301	118	and Obrebski, 1981). Our focal questions were:
302 303	119	1) What is the pattern of water residence time across this intertidal flat based on
304 305	120	circulation modeling?
306 307 308 309	121	2) Are channel-to-shore gradients in water properties (salinity, temperature, chlorophyll)
	122	consistent with an extended water residence time?
310 311 312	123	3) How variable are oyster growth and condition from channel to shore, controlling for
313 314	124	tidal elevation?
315 316	125	The overall goal is therefore to evaluate a previously unexplored mechanism of intertidal
317 318	126	water residence time in establishing cross-shore physical and biological gradients on
319 320	127	tidal flats.
321 322	128	
323 324	129	2 Methods
325 326	130	
328 329 330 331 332 333 334 225	131	2.1 Study site
336		

338		
339 340	132	Willapa Bay, Washington, USA, has extensive tidal flats, with half of the bay area out of
341	133	the water on extreme low tides. We selected a tidal flat to study near the bay mouth
342		, , , , , , , , , , , , , , , , , , ,
343	134	(46.59N, 124.02W, Fig. 2, 3), where much of the flat is occupied by commercial on-
345 346 247	135	bottom oyster culture, supported by plankton blooms advected from the nearshore ocean
348 349	136	(Roegner et al., 2002). Commercial shellfish aquaculture, primarily for Pacific oysters,
350 351	137	occupies approximately 20% of Willapa Bay's intertidal area (Feldman et al., 2000),
352 353	138	yielding up to 17% of the oysters cultured in the United States (Dumbauld and McCoy,
354 355	139	2015). Within ca. 50 ha at our study site, 38,000 bushels of oysters are harvested
356 357	140	annually (F. Wiegardt, pers. comm.).
358 359	141	
360	1.40	
361	142	2.2 Circulation model of residence time
362 363 364	143	Banas and Hickey (2005) presented and validated a 255-m-resolution circulation model
365 366	144	of Willapa Bay, run under a variety of tide, riverflow, and wind forcing conditions.
367 368	145	More recently, a preliminary coupled bio-physio-chemical model of Willapa Bay,
369 370	146	implemented in ROMS (Regional Ocean Modeling System: Haidvogel et al., 2008) at
371 372	147	500 m resolution, has been introduced as part of the LiveOcean system
373 374	148	(https://faculty.washington.edu/pmacc/LO/LiveOcean.html) and is being used to
375 376	149	produce daily forecasts. The model used in this study is a branch of the Banas and
377 378	150	Hickey (2005) model, implemented in ROMS but independent of the LiveOcean project,
379 380	151	and designed not for realistic hindcasting but for process insight, in the same spirit as a
381 382	152	tabletop fluid-dynamical lab experiment. Compared with the original Banas and Hickey
384 385	153	(2005) model, the ROMS model used here has simplified external forcing but, crucially,
386 387 388 389	154	much higher spatial resolution (50 m) and updated intertidal bathymetry.

The base bathymetry used in the model is the same as that used by Banas and Hickey (2005), a dataset provided by the US Army Corps of Engineers Seattle District, based on a survey of Willapa Bay's subtidal channels in 1998 (Kraus, 2000). Into this model grid we substituted an improved intertidal bathymetric dataset, provided by the Olympic Natural Resources Center (ONRC), which merges NOAA Coastal Service Center LiDAR with locally collected point soundings and vertical datum transformations for integration with USGS National Hydrographic Datasets by the ONRC staff. The final model bathymetry uses the ONRC bathymetry at depths between 1.55 m above and 1.55 m below mean sea level (1.55 is the average of the difference between mean tide level and mean lower low water (MLLW) at 7 NOAA sites around the bay), and the Kraus (2000) model grid at deeper depths. The model case used is a semi-idealized representation of summer, low-riverflow conditions, in which the circulation is forced only by the semidiurnal (M2) tide and its interaction with complex bathymetry, including wetting and drying of intertidal banks (Oey, 2005; Warner, 2010; Xue and Du, 2010). For efficiency and stability, this implementation of the model (unlike the original) is two-dimensional, i.e., barotropic: this allows us to resolve fine-scale bathymetry with less smoothing, although some flow information is lost. Banas et al. (2004) showed that neglecting baroclinic processes was a fair approximation for late-summer, low-riverflow conditions in Willapa Bay, although this simplification would not be appropriate for winter or spring conditions. M2 tidal amplitude at the open boundary was set at 1.2 m. This produces a standard deviation (SD) in sea level of 0.85 m at Toke Point near the bay mouth (NOAA station 9440910,

451
452
452
453
454
178
46° 42.5' N, 123° 58' W), which matches the observed SD of sea level at Toke Point
453
454
178
over three years to within 1%.

Net circulation, residence time, and horizontal tidal diffusivity (a measure of the strength of tidal stirring and the residual, tidally-averaged circulation) were calculated based on the statistics of 170,000 particles (one per 50 m x 50 m grid cell) tracked for one tidal cycle using depth-averaged currents. Beginning and ending positions of the particles were used to construct a transition matrix or "tidal return map" (Banas and Hickey, 2005; Banas et al., 2009) from which longer trajectories and residence-time statistics were calculated. Residence times are reported below at 200 m resolution, based on clusters of 16 particles released with 50 m spacing. Residence time is here defined as the length of time that more than half of the 16 particles released in each 200 m square at high tide continue to be found in the intertidal zone at successive high tides (where each successive high tide in this calculation represents one set of lookups in the 50 m-resolution return map).

The model was validated by two methods: first, point comparisons with velocity time series in the main channel and from the intertidal study site; and second, for a more integrative measure, comparing tidal-excursion-scale horizontal diffusivity in the main channel with empirical values based on salinity time-series analysis (Banas et al., 2004). For the velocity validation, six velocity time-series stations were used, four in the main channel as described by Kraus (2000) and previously used for model validation by Banas and Hickey (2005), and two new intertidal stations, one towards shore (N46.59774°, W124.03021°) and one near the channel (N46.59790°, W124.02082°). Currents at these two intertidal stations were measured with acoustic Doppler current

profilers (Nortek Aquadopp) on 19 to 28 Jul 2008. Flow was determined for multiple 5 cm bins (north/south, east/west and up/down) beginning 10 cm off the bottom to within 10 cm of the surface of the water, and measurements were taken at 2 MHz at 10 minute intervals with a 0.05 m blanking distance. At both stations, water depth at mean high water was 2 m. Depth-averaged root mean square (rms) tidal velocity at all six stations from observations and the model are given in Table 1. Percent errors range from 1-35% with a mean of 15%, generally increasing up-estuary and shoreward, and generally in the direction of overestimated velocities and underestimated velocity gradients in the model. Note that this mode of error probably biases model results in a direction opposite to our conclusion that strong net-circulation gradients exist across intertidal flats. For the horizontal diffusivity analysis, which measures the net, tidally averaged tidal circulation (as opposed to the amplitude of tidal currents themselves), we calculated diffusivities K_H at the five main-channel stations where observational estimates were previously reported (Banas et al., 2004), from the rate of horizontal dispersion of square patches of model particles the same width as the channel: $K_H = 1/2 \ d < x^2 > /dt$, where t is time and $\langle x^2 \rangle$ is the two-dimensional variance in particle positions around their center of mass. Like the Banas and Hickey (2005) model, this new version of the model replicates the high diffusivities (200-700 m² s⁻¹) observed in moored salinity time series in the well-flushed outer 20 km of the estuary, where our study site is located. In the poorly flushed, southern reaches of the bay, where observationally-derived horizontal diffusivities on the scale of the channel width are 50-100 m² s⁻¹ (Banas and Hickey, 2005), the new ROMS model underestimates diffusivities by approximately a factor of two and predicts main-channel residence times ~25-50% higher than the Banas

and Hickey (2005) estimate. These discrepancies could result from both models' simple assumptions about bottom friction; bias in the depth of shallow tidal flats introduced in the merging of intertidal and subtidal bathymetric surveys; under-resolution of narrow, secondary and tertiary channels; or weak baroclinic effects. Since these issues do not seem to affect our study area and in any case would be difficult to pursue without extensive new observations, we have simply confined our analysis to the middle-to-outer estuary (Fig. 2), and refrain from speculating about residence time patterns across tidal flats in the southern bay. 2.3 Cross-shore pattern of temperature and salinity Salinity can act as a passive tracer of water age, particularly when source water varies in salinity due, in this case, to coastal upwelling strength. We deployed multiparameter dataloggers (YSI Datasonde 6600) between 2 Jun and 28 Aug 2008 to record salinity (as specific conductivity), temperature, and water depth at five stations spanning 1 km from channel to shore (Fig. 3a, Table S1). Probes were suspended 0.1 m above the sediment, recording at 10-min intervals, and were cleaned every 2 wk. Sensors were held in a common water bath four times throughout the summer, and specific conductivity adjusted for two of the sensors showing consistent offsets from the others. Specific conductivity (mS/cm) was then converted to salinity (practical salinity units; Wagner et al., 2006). For the three-month period of deployment, median water levels were 1.6 m relative to MLLW. Seven measurements centered around the time of median water level were averaged on each flood tide at each sensor; this process standardized comparisons across the tidal flat.

The Bakun upwelling index for the time series point closest to Willapa Bay (48° N, 125° W) was used as an index of salinity in source water outside the bay (http://www.pfel.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/data downloa d.html). For each of two sensors closest to the channel, each day's salinity (mean of two flood tides on most days) was related to the daily upwelling index using a linear model, and model fit (r^2 , P value for n=63 or 68 days) was recorded for time lags of 0 to 7 days. Due to summer drought, these models also included day of year as a predictor to account for generally increasing salinity in the bay during the summer. Two types of analyses were carried out to determine cross-shore gradients in temperature and salinity, testing each of three shoreward stations against the channel station with the most complete record (ChS). The first type emphasized mean differences in water properties based on paired t-tests (paired by each flood tide). The second type emphasized time lags in water properties by examining model fit (r^2 for $n\sim75-130$ flood tides) of the relationship between the times series at two sensors, with lags from the channel sensor of 0 to 4 tidal cycles. 2.4 Cross-shore pattern of chlorophyll concentration Two approaches were taken to determine how chlorophyll concentration changed across the tidal flat, one involving fixed sensors and a second by motoring a sensor along

- transects from channel to shore. We deployed multiparameter dataloggers (YSI
- 662 266 Datasonde 6600) between 2 and 15 Aug 2007 to record chlorophyll fluorescence, water
 - 267 depth, temperature, and salinity, at one near-channel station (ChN) and three towards
- ⁶⁶⁶ 268 shore (two of these three sensors were at ShMid; Fig. 3a, Table S1). Sensors spanned

0.56 km, with probes suspended 0.1 m above the sediment and recording at 10-min intervals. To make fluorescence readings consistent among sensors, the four sensors were held in common conditions while chlorophyll was altered by adding and filtering phytoplankton (14 levels), and adjustments were made to raw values so that all sensors had the same slope and zero intercept; however, no bottle samples were collected for calibration to chlorophyll-a, and so results are provided only as fluorescence. During field deployment, the sensors occasionally generated segments of particularly noisy data, in which both the values themselves and their change between 10-min intervals were large (i.e. corrected values >25 μ g L⁻¹ and fluctuation >10 μ g L⁻¹), possibly from catching drift macroalgae. We removed readings >25 μ g L⁻¹ before proceeding to the next step of calculating tide-specific fluorescence. Seven measurements centered around the time of each median water level (1.6 m MLLW) were averaged for each flood and ebb tide for each sensor. We required at least three of the seven measurements to have passed the 25 μ g L⁻¹ filter, and then removed any values >10 μ g L⁻¹ from the mean fluorescence of other measurements. Also, strong drift in fluorescence was evident at one ShMid sensor for the last five days of deployment, and these means were included in visual display of all data but not used in analysis. Once these steps to generate means from reliable sections of fluorescence readings were complete, we calculated the difference in fluorescence (t-test, paired by tidal cycle) between each sensor and the one closest to the channel (ChN), separately for flood and ebb tides. Chlorophyll concentrations were mapped across the tidal flat an hour before the afternoon high tide on 17 Aug 2008. This small boat-based sampling involved driving six transects from channel to shore while water was forced into the opening of a tube

730		
731	292	under the boat 0.2 m below the surface. The water then fed into a nine holding a VSI
732		under the bout, 0.2 in below the surface. The water then fed into a pipe holding a 151
733	293	Datasonde 6600, which measured temperature, salinity (as specific conductivity), and
735		
736	294	fluorescence every 5 seconds. A GPS (Garmin Geko) simultaneously recorded position.
737		
738	295	To calibrate the chlorophyll sensor, bottle samples were collected (300 ml in triplicate at
739		
740	296	three positions), extracted in 90% W/V acetone and frozen >24 h, and measured on a
741	207	
742	297	fluorometer (Turner Designs AU-10) following acidification procedure (Welschmeyer
744	208	1001) This calibration showed that the fluorescence values recorded by the sensor
745	290	1994). This canoration showed that the muorescence values recorded by the sensor
746	299	needed to be altered. Chlorophyll-a = $0.319 \times \text{Fluorescence}$ (r ² =0.68 N=9) Each
747	_,,,	
748	300	transect of about 0.5 km had 14-31 measurements at different distances from the channel
749 750		
751	301	(MLLW contour). Chlorophyll-a was considered a response variable and distance a
752		
753	302	predictor variable in linear models (regression) to calculate the slope and standard error
754	202	
755	303	for each transect. Then, meta-analysis procedures were applied to these six slopes and
750 757	304	SE to calculate the overall change in chloronhyll with distance from the channel (rma
758	504	SE to calculate the overall enange in entorophyli with distance from the enanier (fina
759	305	command in package metafor: Viechtbauer, 2017).
760		
761	306	
762		
764	307	2.5 Cross-shore pattern of oyster performance
765	200	
766	308	Growth and condition of juvenile oysters (<i>Magallana</i> = Crassostrea gigas) were
767	300	measured at five stations on the tidal flat where the overall bathymetry was sufficiently
768	507	measured at five stations on the fidar hat where the overall bathymetry was sufficiently
769	310	flat to enable deployment at a common tidal elevation judged by water level (Fig. 3a)
771	010	
772	311	Distance to channel was determined for each station based on the MLLW contour, and
773		
774	312	ranged from 0.2 to 0.7 km (Table S1). Hatchery-raised oyster larvae were settled onto 11
775	212	
//b 777	313	x 11 cm unglazed ceramic tiles, thinned to 8-15 oysters per tile, and grown to a size of 1
778	214	cm shell length in a common location. On 3 Aug 2007 five tiles were attached vertically
779	514	em sien iengen in a common location. On 5 Aug 2007, five thes were attached vertically
780		
781		

786		
787	315	to PVC poles at an elevation of ± 0.6 m MLI W at each of the five outplant stations. Tiles
788	515	to I ve poles at an elevation of +0.0 in Wille w at each of the rive outplant stations. Thes
789	316	were always at least 0.15 m above the sediment, although this distance varied slightly
790	510	
791	317	among stations. Tiles were collected 19 May 2008, and all ovsters were measured for
792	017	
794	318	maximum shell length from the umbo (shell height, mm). Subsequently, oyster meat was
795		
796	319	removed and dried (60°C, nearest 0.01 g) and a metric of condition developed as the
797		
798	320	ratio of dry meat weight to shell length. We were unable to remove bottom valves from
799		
800	321	the tiles, thus precluding the use of typical condition index based on ratios of tissue mass
801		
803	322	to internal shell volume (Lawrence and Scott, 1982). Of 25 tiles deployed, 23 were
804		
805	323	recovered. Of 1/1 oysters measured, three were removed from analysis because their
806	224	
807	324	tissue mass did not register on our balance (two from a shoreward station and one near
808	225	the shownel) and an additional and was assessed because its weight was makely
809	323	the channel) and an additional one was censored because its weight was probably
810	376	incorrectly recorded (order of magnitude more dry mass than any other oyster). Oyster
811	520	inconcerty recorded (order of magnitude more dry mass than any other byster). Oyster
813	327	shell height and condition were analyzed with linear mixed effects models in which
814	521	shen height and condition were analyzed with medi mixed encets models, in which
815	328	distance to channel was a fixed effect and tile was a random effect to account for
816	020	
817	329	multiple oysters per tile (package nlme, Pinheiro et al., 2016). Statistical significance
818		
819	330	was set at α =0.05. Analyses of water properties and oyster performance were performed
820		
021 822	331	in R (R Core Team, 2015). Empirical data underlying these analyses are archived at
823		
824	332	http://dx.doi.org/10.17632/wx9y9njnnr.1
825		
826	333	
827		
828	334	3 Results
829	~~~	
830	335	
832	226	2.1.Weter mariter and the
833	336	5.1 water restaence time
834		
835		
836		
837		
838		

The ROMS numerical model showed a strong spatial pattern in intertidal residence time around our study site. Fig. 2 depicts the number of tidal cycles it takes for half of the 16 particles originating in each 200 x 200 m square in the intertidal zone to be found outside the intertidal zone at high water. This quantity is a proxy for the length of time that intertidal grazers have access to a particular water parcel. In our study region, this intertidal residence time varies from 0-4 tidal cycles over a distance of 2 km, with a reduced range over the 1-km tidal flat where stations for empirical measurements were located. Values are patchy, but generally increase toward shore. Gradients in residence time emerge on a number of wide tidal flats in the middle-to-outer estuary (Fig. 2), not only at our study site. However, the width of a particular tidal flat is not a reliable predictor of the mean or maximum intertidal residence time: examples can be found (Fig. 2) of narrow flats with residence time much greater than one cycle, and extensive intertidal flats where the outer portions are well-flushed within one cycle, as one might naively expect.

3.2 Cross-shore pattern of temperature and salinity

Upwelled, high-salinity water outside the bay reached the channel sensors after a 4-day lag (Fig. 4a, Table 2). The highest r² values were associated with 4-day lags, and model fit for salinity was significantly improved by including the Bakun upwelling index as a predictor, lagged by four days (likelihood ratio tests of models with no upwelling predictor vs. 4-day lag: ChN $F_{1.60}$ =21.4, P<0.0001, ChS $F_{1.66}$ =21.3, P<0.0001). Empirically, water properties at median flood tide differed between sensors deployed at channel and shore stations (Fig. 4b, c). Water at the station closest to shore (ChIn) was

 0.58° C warmer than at the channel, and other shoreward stations followed this pattern (0.62°, 0.30°C warmer, Table 3). Salinity tended to be lower at shoreward stations relative to the channel stations and also lagged by one tidal cycle from channel to shore (Table 3). This lag is particularly evident in Fig. 4b for a portion of summer 2008 when salinity was initially lower towards shore and then reversed to be higher towards shore, as downwelled low-salinity water reached the shoreward portion of the tidal flat later than it appeared near the channel. No lags were necessary in the best fit model for the temperature time series, but a notable feature here was that lags of 0, 2, 4 tidal cycles fit better than lags of 1, 3 cycles (Table 3). This evidently arose due to the diurnal cycle in heating and cooling, with the warmer temperatures occurring during afternoon and early evening. *3.3 Cross-shore pattern of chlorophyll concentration* In general, fluorescence was low as water began to flood onto the tidal flat, then increased during the flood and declined during the ebb, especially at the channel station (Fig. 5c). On flood tides, the upstream station was near the channel and downstream stations towards shore. All downstream stations had significantly lower fluorescence than the channel station as water flooded through median water level (Fig. 5a, Table 4). During flood tides, the sensor at ShOut recorded 78% of the fluorescence relative to the channel station, and this proportion was even lower at the two ShMid sensors (37%, 64%). As the tide ebbed, the channel station was downstream from stations closer to shore, but still had greater or similar fluorescence relative to shoreward stations (Fig. 5b,

- Table 4). Fluorescence did not differ at ShOut and ChN, but one of the ShMid sensors recorded lower fluorescence (47% relative to ChN). Chlorophyll concentrations in surface water measured along transects also declined from channel to shore (Fig. 3b, Table S2). Chlorophyll-a at the start of each transect, closest to the channel, was 4.23 µg L⁻¹, and this declined at -2.99 µg L⁻¹ km⁻¹ (SE 0.53). Accordingly, over 0.5 km, the proportion of chlorophyll remaining was 65%. 3.4 Cross-shore pattern of oyster performance Over nine months, juvenile over on tiles grew from about 1 cm to 3 cm. Final shell height of juvenile ovsters did not differ with distance to channel ($t_{1,21}$ =-0.27, p=0.8; Fig. 6a). However, condition (dry tissue weight per shell height) followed a channel-to-shore gradient (Fig. 6b). Condition declined 25% across the intertidal flat as oysters were 0.5 km further from the channel (Condition = $5.73 - 2.828 \times \text{Distance in km}$; $t_{1,21}$ =-2.66, p=0.015). This pattern emerged even though tidal elevation and immersion time were held constant. Discussion The key result to emerge from both modeling and empirical work in our study is that heterogeneous water residence time on intertidal flats provides an additional mechanism for cross-shore physical and biological gradients, beyond the more obvious mechanisms of tidal elevation and upstream-downstream position, and despite water draining off the flat at each low tide. At the subtidal (tidally-averaged) scale, water found near shore at high tide tends to return to the intertidal zone every high water for a median of 4 tidal

cycles, whereas water near the channel is largely replaced every tidal cycle (Fig. 2). By examination of other tidal flats modeled in middle-to-outer Willapa Bay, it is clear that intertidal residence time is not a simple function of distance to channel or bathymetry; however, gradients in residence time only developed on wider (>1 km) tidal flats, while heterogeneity appeared in model results at smaller scales (Fig. 2). Residence-time gradients across tidal flats have two implications. First, food depletion must be thought of as a several-tidal-cycle process: although the water found on the tidal flat drains into the channel on every ebb tide, its return over several successive flood tides allows it to be repeatedly and intensively modified through interactions with the sediment and benthic organisms. Second, because of this process, tidal circulation may create gradients in food availability over an intertidal area of 1 km or less, because differences in water age allow neighboring water parcels to be subject to different levels of depletion even if grazing pressure is spatially uniform. Do such multi-day water residence times, as predicted by the numerical model reported here, as well as a prior iteration (Banas et al., 2007), actually occur on intertidal flats? Observations of physical (salinity) and biological (chlorophyll) water properties indicate that they do. Weather-event-scale fluctuations in salinity show a time lag (one tidal cycle) from channel to shore, indicating that the water towards shore takes longer to be replaced than water near the channel: the tidal flat is not renewed as a single unit on each flood tide. Note that the lag of 1 tidal cycle was measured over a smaller distance than the full tidal flat width over which the model predicts a residence time gradient from 0-4 cycles, and also that the lag time is a different physical quantity (signal

427 propagation time through an oscillatory boundary layer: Batchelor, 1967) from a428 residence time estimate.

For chlorophyll, it is necessary to ask whether the observed gradients could have been achieved through suspension-feeding as the water transited between sensors during a single flood tide (as in Fig. 1a), or whether a longer period of interaction is required (Fig. 1b). Key parameters to distinguish these processes are available from prior studies of this tidal flat in which parcels of water were tracked with Lagrangian drifters (Wheat and Ruesink, 2013): exponential loss rates of chlorophyll were -0.24 h⁻¹ due to the feeding of benthic suspension-feeders, while water velocity averaged 0.16 m s⁻¹, consistent with model results and stationary sampling (Table 1). The loss rate of -0.24 h ¹ was measured at water depths <1.2 m (Wheat and Ruesink, 2013), and so represents an upper bound (i.e. rapid decline) in which suspension feeders affect a small volume of overlying water. Recall that ShMid sensors showed 37% and 64% of fluorescence relative to ChN, and these sensors were separated by 0.56 km east-west (1 h at 0.16 m s⁻ ¹), giving loss rates of -0.99 and -0.44 h⁻¹. Thus the observed decline was two to four times greater than could be explained by a single passage of water between the stations. Additionally, during ebb tides, stations near the channel were in a downstream position relative to suspension-feeding occurring on the tidal flat. However, compression, rather than reversal, of the channel-to-shore gradient occurred on ebb relative to flood tides (Fig. 4). That is, on ebb tides, the shoreward stations were still lower in fluorescence than expected from a simple consideration of water influenced during a single transit between stations.

1122		
1123	440	Transports from abannal to shore showed that abharanhull dealined to 65% over
1124	449	Transects from channel to shore showed that emotophyn dechned to 0576 over
1125	450	0.5 trm (0.87 h at 0.16 m g-1; Fig. 2h. Table S2) a logg rate of 0.50 h-1. As such
1126	430	$0.5 \text{ km} (0.87 \text{ m at } 0.10 \text{ m s}^2, \text{ Fig. 50, Table 52}), \text{ a loss face of -0.50 m}^2$. As such,
1127	451	
1128	451	empirical data from transects concurred with fixed sensors in demonstrating greater
1129	450	
1130	452	chlorophyll losses in water towards shore than expected from suspension-feeding in
1131		
1132	453	even-aged water. The results were consistent despite different methods, e.g.,
1133		
1134	454	measurements on transects within 0.2 m of the water surface, but within 0.1 m of the
1135		
1100	455	sediment for fixed sensors. Fixed sensors gave further insight into mechanisms
1137		
1130	456	underlying gradients in chlorophyll concentrations through examination of the time
1140		
1141	457	series at 10-min resolution. Specifically, the first water to flood onto the tidal flat and
1142		
1143	458	reach the stations near the channel was low in fluorescence (Fig. 5c), suggesting older,
1144		
1145	459	depleted water that mixed only weakly with newer, chlorophyll-rich water while in the
1146		
1147	460	channel during low slack tide (cf. MacDonald, 2006).
1148		
1149	461	Our conclusion that cross-shore gradients in chlorophyll were established
1150		
1151	462	through multiple passes of water over the tidal flat needs to be evaluated in light of
1152		
1153	463	several other factors known to limit draw-down by suspension feeders. Growth
1155	161	
1156	464	dynamics of phytoplankton (Calbet and Landry, 2004) and/or resuspension from the
1157		
1158	465	benthos (Ruesink et al., 2019) would tend to make our loss rates underestimates. Effects
1159		
1160	466	of suspension feeders on chlorophyll are also expected to be diluted as water depth
1161		
1162	467	increases. Overall, each of these factors would make residence-time variation less
1163		
1164	468	important to cross-shore gradients in chlorophyll, yet we nevertheless found empirical
1165		
1166	469	gradients greater than could be explained by benthic suspension-feeding during a single
1167		
1168	470	transit of water.
1169		
1170		

In contrast to salinity and chlorophyll, which supported that water appeared multiple times on the tidal flat, temperature was modified primarily within tidal cycles. We draw this conclusion due to the absence of statistical lags between channel and shoreward stations (Table 3), but also from strong diel variability in temperature. Water temperatures were warmer during daytime than nighttime flood tides, and also exhibited stronger channel-to-shore gradients during the day (Fig. 4c). Indeed, the first water to reach the shoreward sensor as the tide flooded in late afternoon was overall highest in temperature (Fig. 5d), as its small volume was heated by contact with dark sediment. In aggregate, these observations are consistent with water being heated as it travels over solar-heated sediment and cooled at night, making residence time effects less apparent. The distinction may arise because salinity is a conservative tracer and chlorophyll is likely to accumulate benthic influence in one direction only, whereas water temperatures may be modified in both positive and negative directions by a variety of heat-budget drivers acting at shorter time scales than residence time. Food limitation due to draw-down of water column resources by other suspension feeders has been documented at two scales: at a scale of near neighbors, for instance in shellfish aquaculture stocked at high densities (Newell, 1990; Muschenheim and Newell, 1992; Senechal et al., 2008; Grangere et al., 2010), and at whole-basin scales when feeding by suspension feeders exceeds the delivery or growth of phytoplankton (Alpine and Cloern, 1992). In some cases, delivery of water column resources is not tightly linked to benthic secondary production, where the diet of suspension-feeders is dominated by resuspended microphytobenthos (Kang et al., 2003; Herman et al., 2000; van Oevelen et al., 2006). Nevertheless, competition impacts not

1234		
1235	101	only near neighbors, by creating local regions of food depletion (Lenihan, 1900)
1236	4/4	only hear heighbors, by creating local regions of food depiction (Lemman, 1999,
1237	495	Grangere et al., 2010), but also the food availability for distant individuals when
1230		
1240	496	extended water residence time allows for significant filtration. Secondary productivity
1241		
1242	497	on the tidal flat is accordingly driven by a complex interaction between filtration and
1243	100	
1244	498	residence time dynamics. Other studies have found similarly complex relationships
1245	400	between plankton dynamics, water advection and benthic secondary productivity
1247	499	between plankton dynamics, water advection and benuite secondary productivity
1248	500	(Tweddle et al 2005: Simpson et al 2007) Despite these complexities the connection
1249	000	
1250	501	between (low) residence time and (high) bivalve carrying capacity has long been known
1251		
1252	502	at whole-estuary scales (Dame and Prins, 1998; Zu Ermgassen et al., 2013). Lower
1254	500	
1255	503	oyster condition is therefore consistent with longer water residence time towards shore,
1256	504	controlling for tidal elevation. Although shell growth did not follow a cross shore
1257	504	controlling for tidal elevation. Attribugh shen growth did not follow a cross-shore
1250	505	gradient (Fig. 6), condition is the primary economic benchmark on this tidal flat, which
1260		
1261	506	is a fattening ground for oysters (Hedgpeth and Obrebski, 1981).
1262		
1263	507	As expected in an estuary, salinity generally increased with water level as
1265	500	according water was advanted into the actuary on each flood tide (Fig. 5d). This is
1266	308	oceanic water was advected into the estuary on each nood tide (Fig. 3d). This is
1267	509	consistent with earlier conclusions (Roegner et al 2002: Banas et al 2007) that in this
1268	209	
1269	510	coastal-upwelling-driven system, phytoplankton are primarily supplied by the coastal
1270		
1272	511	ocean and progressively depleted within the estuary, such that high chlorophyll is
1273	510	
1274	512	correlated with high salinity, both across the tidal flat and across the tidal cycle within
1275	512	stations (Fig. 5a.d. Table S2)
1276	515	stations (11g. 5c,u, 1 able 52).
1278	514	Estuaries are typically described as heterogeneous in their along-axis dimension.
1279		
1280	515	including both physical and biological gradients (Attrill and Rundle, 2002; Ruesink et
1281		
1282	516	al., 2015; Tweedley et al., 2016). Orthogonal to this axis, as depth is reduced and flats
1284		
1285		
1286		
1287		

emerge at low tide, water flow and residence time can be influenced by wind, small bathymetric features such as hummocks and sloughs, and seawater-porewater exchange (Pokavanich and Alosairi, 2014; Sullivan et al., 2015). To our knowledge, no prior reports exist (other than Banas et al., 2007) of heterogeneity in multi-day residence time on intertidal flats, although extended residence times towards shore can be inferred from general principles if water reaching shallower depths is restricted in mixing with new ocean water (Hsu et al., 2013). Our empirical measurements of water properties support the existence of residence time variation at scales of 0.5-1 km intertidally, which effectively lengthens the time scale over which upstream suspension-feeders may modify resource delivery underlying benthic secondary production. The sedimentary characteristics of tidal flats are now understood as a predictable function of sediment supply and ratio of tidal currents to waves (Gao, 2019); however, water properties across these flats require further scrutiny to determine which morphological and hydrodynamic factors may lead to multi-day residence times. Acknowledgements This work was funded in part by a grant from Washington Sea Grant, University of Washington, pursuant to National Oceanic and Atmospheric Administration Award No. NA07OAR4170007. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies. We appreciate help from S. Yang, A. Norman, A. Trimble, M. Logsdon, K. Bennett, and T. Alcock. B. Dumbauld and L. McCoy provided the aerial photograph. Site access and insight came from K. and F. Wiegardt of Jolly Roger Oysters.

1345		
1346		
1347	540	
1348	0.10	
1349	541	References
1350		
1352	542	Abelson, A., Denny, M., 1997. Settlement of marine organisms in flow. Ann. Rev. Ecol.
1353		
1354	543	Syst. 28, 317-339.
1355		
1356	544	Alpine, A.E., Cloern, J.E., 1992. Trophic interactions and direct physical effects control
1357		
1358	545	phytoplankton biomass and production in an estuary. Limnol. Oceanogr. 37, 946-
1359		
1361	546	955.
1362	C 4 7	
1363	547	Attrill, M.J., Rundle, S.D., 2002. Ecotone of ecocline: Ecological boundaries in
1364	518	astuarias Est. Coastal Shalf Sai 55,020,026
1365	548	estuaries. Est. Coastar Sherr Sci. 55, 929-950.
1366	549	Banas N.S. Hickey B.M. 2005 Mapping exchange and residence time in a model of
1367	517	Dunus, 10.5., Therey, D.101., 2005. Mupping exchange and residence time in a model of
1360	550	Willapa Bay, Washington, a branching, macrotidal estuary. J. Geophysical Res
1370		
1371	551	Oceans 110(C11), 10.1029/2005JC002950.
1372		
1373	552	Banas, N.S., Hickey, B.M., MacCready, P., Newton, J.A., 2004. Dynamics of Willapa
1374		
1375	553	Bay, Washington: A highly unsteady, partially mixed estuary. J. Phys. Oceanogr. 34,
1370	A	2412 2427
1378	554	2413-2427.
1379	555	Paper N.S. Hickov, P.M. Newton, I.A. Dussink, I.J. 2007. Tidal evaluation bivelys
1380	555	Danas, N.S., HICKEY, D.M., Newton, J.A., Ruesnik, J.L., 2007. Huai exchange, ofvalve
1381	556	grazing and patterns of primary production in Willana Bay Washington USA Mar
1382	220	grazing, and patterns of printary production in Winapa Day, Washington, OSTA Mar.
1383	557	Ecol. Prog. Ser. 341, 123–139.
1304		
1386	558	Banas, N.S., MacDonald, P.S., Armstrong, D.A., 2009. Green crab larval retention in
1387		
1388	559	Willapa Bay, Washington: An intensive Lagrangian modeling approach. Est. Coasts
1389		
1390	560	32, 893-905.
1391	561	
1392	561	Batchelor, G.K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press,
1394	562	615 nn
1395	302	015 pp.
1396		
1397		
1398		
1399		
1400		

1401 1402		
1403 1404	563	Bishop, M.J., Peterson, C.H., 2006. Direct effects of physical stress can be counteracted
1405 1406	564	by indirect benefits: oyster growth on a tidal elevation gradient. Oecologia 147, 426-
1407 1408	565	433.
1409 1410	566	Brown, J.R., Hartwick, E.B., 1988. Influences of temperature, salinity and available food
1411 1412	567	upon suspended culture of the Pacific oyster, Crassostrea gigas: I. absolute and
1413 1414 1415	568	allometric growth. Aquaculture 70, 231–251.
1416 1417	569	Calbet, A., Landry, M.R., 2004. Phytoplankton growth, microzooplankton grazing, and
1418 1419	570	carbon cycling in marine systems. Limnol. Oceanogr. 49, 51-57.
1420 1421	571	Dame, R., Prins, T.C., 1998. Bivalve carrying capacity in coastal ecosystems. Aquatic
1422 1423	572	Ecol. 31, 409–421.
1424 1425	573	Dettmann, E.H., 2001. Effect of water residence time on annual export and
1426 1427	574	denitrification of nitrogen in estuaries: A model analysis. Estuaries 24, 481-490.
1428 1429	575	Dittman, S., 2000. Zonation of benthic communities in a tropical tidal flat of north-east
1430 1431 1432	576	Australia. J. Sea Res. 43, 33-51.
1433 1434	577	Dumbauld, B.R., McCoy, L.M., 2015. Effect of oyster aquaculture on seagrass Zostera
1435 1436	578	marina at the estuarine landscape scale in Willapa Bay, Washington (USA).
1437 1438	579	Aquaculture Environment Interactions 7, 29-47.
1439 1440	580	Feldman, K.L., Armstrong, D.A., Dumbauld, B.R., DeWitt, T.H., Doty, D.C., 2000.
1441 1442	581	Oysters, crabs, and burrowing shrimp: Review of an environmental conflict over
1443 1444	582	aquatic resources and pesticide use in Washington State's (USA) coastal estuaries.
1445 1446	583	Estuaries 23, 141–176.
1447		
1449		
1451		
1452 1453		
1454		
1455		
1456		

1457 1458		
1459 1460	584	Gangnery, A., Chabirand, J.M., Lagarde, F., Le Gall, P., Oheix, J., Bacher, C., Buestel,
1461 1462	585	D., 2003. Growth model of the Pacific oyster, Crassostrea gigas, cultured in Thau
1463 1464	586	Lagoon (Mediterranee, France). Aquaculture 215, 267–290.
1465 1466 1467	587	Gao, S. 2019., Geomorphology and sedimentology of tidal flats. Pp 359-381 in (Perillo,
1468 1469	588	G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., eds) Coastal Wetlands: an
1470 1471	589	integrated ecosystem approach, 2 nd ed. Elsevier.
1472 1473	590	Grangeré, K., Lefebvre, S., Bacher, C., Cugier, P., Ménesguen, A., 2010. Modelling the
1474 1475	591	spatial heterogeneity of ecological processes in an intertidal estuarine bay: dynamic
1476 1477 1479	592	interactions between bivalves and phytoplankton. Mar. Ecol. Prog. Ser. 415, 141-
1478 1479 1480	593	158.
1481 1482	594	Grizzle, R., Greene, J., Coen, L., 2008. Seston removal by natural and constructed
1483 1484	595	intertidal Eastern oyster (Crassostrea virginica) reefs: A comparison with previous
1485 1486	596	laboratory studies, and the value of in situ methods. Est. Coasts 31, 1208–1220.
1487 1488	597	Harrison, S.J., Phizacklea, A.P., 1987. Temperature fluctuation in muddy intertidal
1489 1490	598	sediments, Forth Estuary, Scotland. Est. Coastal Shelf Sci. 24, 279-288.
1491 1492 1493	599	Hedgpeth, J.W., Obrebski, S., 1981. Willapa bay: a historical perspective and a rationale
1494 1495	600	for research. Office of Biological Services, US Fish and Wildlife Service,
1496 1497	601	Washington, D.C. FWS/OBS-81/03. 52 pp.
1498 1499	602	Herman, P.M.J., Middleburg, J.J., Widdows, J., Lucas, C.H., Heip, C.H.R., 2000. Stable
1500 1501	603	isotopes as trophic tracers: combining field sampling and manipulative labeling of
1502 1503	604	food resources for macrobenthos. Mar. Ecol. Prog. Ser. 204, 79-92.
1504 1505 1506	605	Hickey, B.M., Banas, N.S., 2003. Oceanography of the U.S. Pacific Northwest coast and
1507 1508	606	estuaries with application to coastal ecology. Estuaries 26, 1010-1031.
1509		
1511		

1513		
1514 1515		
1516	607	Hickey, B.M., Zhang, X., Banas, N., 2002. Coupling between the California Current
1517 1518	608	System and a coastal plain estuary in low riverflow conditions. J. Geophys. Res.
1519 1520	609	107(C10), 1029/1999JC000160.
1521 1522	610	Hsu, K., Stacey, M.T., Holleman, R.C., 2013. Exchange between an estuary and an
1523 1524	611	intertidal marsh and slough. Est. Coasts 36, 1137-1149.
1525 1526 1527	612	Kang, C.K., Kim, J.B., Lee, K.S., Kim, J.B., Lee, P.Y., Hong, J.S., 2003. Trophic
1528 1529	613	importance of benthic microalgae to macrozoobenthos in coastal bay systems in
1530 1531	614	Korea: dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser. 259, 79-92.
1532 1533	615	Kraus, N.C., 2000. Study of navigation channel feasibility, Willapa Bay, Washington.
1534 1535	616	Final Report. US Army Corps of Engineers Seattle District, Seattle. ERDC/CHL TR,
1536 1537	617	00-06.
1538 1539	618	Lawrence, D.R., Scott, G.I., 1982. The determination and use of condition index in
1540 1541	619	oysters. Estuaries 5, 23-27.
1542 1543	620	Lenihan. H.S., 1999. Physical-biological coupling on oyster reefs: How habitat structure
1545 1546	621	influences individual performance. Ecol. Monogr. 69, 251-275.
1547 1548	622	Lenihan, H.S., Peterson, C.H., Allen, J.M., 1996. Does flow speed also have a direct
1549 1550	623	effect on growth of active suspension-feeders: An experimental test on oysters.
1551 1552	624	Limnol. Oceanogr. 41, 1359–1366.
1553 1554	625	Lomovasky, B.J., Brey, T., Kluegel, A., Iribarne, O., 2018. Distribution pattern, density
1555 1556	626	and growth of the stout razor clam Tagelus plebeius in a South-west Atlantic
1557 1558 1559 1560 1561 1562 1563 1564 1565	627	estuarine system. J. Mar. Biol. Assoc. UK 98, 485-494.
1566 1567		

1569		
1570		
1571	628	MacDonald D.G. 2006 Estimating an estuaring mixing and exchange ratio from
1572	028	MacDonald, D.O., 2000. Estimating an estuarme mixing and exchange ratio nom
1573	629	boundary data with application to Mt. Hope Bay (Massachusetts/Rhode Island) Est
1574	02)	boundary data with application to wit. Hope Day (Wassachusetts/Khode Island). Est.
1575	630	Coastal Shelf Sci 70 326-332
1570	050	Coustar Bhorr 501. 70, 520 552.
1578	631	Muschenheim DK Newell CR 1992 Utilization of seston flux over a mussel bed
1579		
1580	632	Mar. Ecol. Prog. Ser. 85, 131-136.
1581		
1582	633	Newell, C.R., 1990. Effects of mussel (Mytilus edulis, Linnaeus, 1758) position in
1583		
1584	634	seeded bottom patches on growth at subtidal lease sites in Maine. J. Shellfish Res. 9,
1585		
1580	635	113-118.
1588		
1589	636	Oey, L.Y., 2005. A wetting and drying scheme for POM. Ocean Modelling 9, 133-150.
1590	(27)	
1591	63/	Peterson, C.H., 1991. Intertidal zonation of marine invertebrates in sand and mud.
1592	620	American Scientist 70, 226 240
1593	038	American Scientist 79, 250-249
1594	639	Peterson C.H. Black R 1987 Resource depletion by active suspension feeders on
1595	057	reterson. C.n., Diack, R., 1907. Resource depiction by active suspension recuers on
1597	640	tidal flats -influence of local density and tidal elevation Limnol Oceanogr 32 143–
1598		
1599	641	166.
1600		
1601	642	Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team., 2016. nlme: Linear and
1602		
1603	643	Nonlinear Mixed Effects Models. R package version 3.1-128, http://CRAN.R-
1605		
1606	644	project.org/package=nlme.
1607	c	
1608	645	Pokavanich, T., Alosairi, Y., 2014. Summer flushing characteristics of Kuwait Bay. J.
1609		$C_{1} = 10.107(1072)$
1610	646	Coastal Res. 30, 1000-10/3.
1611	617	P. Coro Toom 2015, P: A Language and Environment for Statistical Computing, P.
1612	047	K Core Team, 2015. K. A Language and Environment for Statistical Computing. K
1614	648	Foundation for Statistical Computing Vienna Austria
1615	010	roundation for Statistical Comparing, Violinia, Rustina.
1616	649	Ren. J.S., Ross, A.H., 2001, A dynamic energy budget model of the Pacific ovster
1617		
1618	650	Crassostrea gigas. Ecol. Modelling 142, 105-120.
1619		
1624		
1622		
1623		

1625		
1626		
1627 1628	651	Roegner, G.C., Hickey, B.M., Newton, J.A., Shanks, A.L., Armstrong, D.A., 2002.
1629 1630	652	Wind-induced plume and bloom intrusions into Willapa Bay, Washington. Limnol.
1631 1632	653	Oceanogr. 47, 1033–1042.
1633 1634	654	Ruesink, J.L., Roegner, G.C., Dumbauld, B.R., Newton, J.A., Armstrong, D.A., 2003.
1635 1636 1627	655	Contributions of coastal and watershed energy sources to secondary production in a
1638 1639	656	northeastern pacific estuary. Estuaries 26, 1079–1093.
1640 1641	657	Ruesink, J.L., Yang, S., Trimble, A.C., 2015. Variability in carbon availability and
1642 1643	658	eelgrass (Zostera marina) biometrics along an estuarine gradient in Willapa Bay,
1644 1645	659	Washington, USA. Est. Coasts 38, 1908-1917.
1646 1647	660	Ruesink, J.L., Donoghue, C.R., Horwith, M.J., Lowe, A.T., Trimble, A.C., 2019.
1648 1649	661	Comparison of shallow-water seston among biogenic habitats on tidal flats. PeerJ 7,
1650 1651	662	e6616, https://doi.org/10.7717/peerj.6616.
1652 1653	663	Ruiz, C., Abad, M., Sedano, F., Garcia-Martin, L.O., Sanchez Lopez, J.L., 1992.
1655 1656	664	Influence of seasonal environmental changes on the gamete production and
1657 1658	665	biochemical composition of Crassostrea gigas (Thunberg) in suspended culture in El
1659 1660	666	Grove, Galicia, Spain. J. Exp. Mar. Biol. Ecol. 155, 249-262.
1661 1662	667	Ryu, J., Khim, J.S., Choi, J.W., Shin, H.C., An, S., Park, J., Kang, D., Lee, C.H., Koh,
1663 1664	668	C.H., 2011. Environmentally associated spatial changes of a macrozoobenthic
1665 1666	669	community in the Saemangeum tidal flat, Korea. J. Sea Res. 65, 390-400.
1667 1668	670	Senechal, J., Grant, J., Archambault, M.C., 2008. Experimental manipulation of
1669 1670	671	suspended culture socks: Growth and behavior of juvenile mussels (Mytilus spp.). J.
1672 1673 1674 1675 1676 1677	672	Shellfish Res. 27, 811–826.
1678 1679		
1080		

1682		
1683 1684	673	Simpson, J.H., Berx, B., Saurel, C., 2007. The interaction of tidal advection, diffusion
1685 1686	674	and mussel filtration in a tidal channel. J. Mar. Systems 68, 556–568.
1687 1688 1689	675	Sullivan, J.C., Torres, R., Garrett, A., Blanton, J., Alexander, C., Robinson, M., Moore,
1690 1691	676	T., Amft, J., Hayes, D., 2015. Complexity in salt march circulation for a
1692 1693	677	semienclosed basin. J. Geophys. ResEarth Surface 120, 1973-1989.
1694 1695	678	Tomiyama, T., Komizunai, N., Ito, K., Omori, M., 2010. Spatial variation in the
1696 1697	679	abundance and condition of the bivalve Nuttallia olivacea in relation to
1698 1699 1700	680	environmental factors and sublethal predation. Mar. Ecol. Prog. Ser. 406, 185-196.
1701 1702	681	Tweddle, J.F., Simpson, J.H., Janzen, C.D., 2005. Physical controls of food supply to
1703 1704	682	benthic filter feeders in the Menai Strait. Mar. Ecol. Prog. Ser. 289, 79-88.
1705 1706	683	Tweedley, J.R., Warwick, R.M., Potter, I.C., 2016. The contrasting ecology of temperate
1707 1708	684	macrotidal and microtidal estuaries. Oceanogr. Mar. Biol. Ann. Rev. 54, /3-1/1.
1709 1710 1711	685	Van Oevelen, D., Soetart, K., Middelburg, J.J., Herman, P.M.J., Moodley, L., Hamels, I.,
1712	080	Moens, T., Help, C.H.K., 2006. Carbon nows through a benthic food web.
1713 1714	687	Integrating biomass, isotope and tracer data. J. Mar. Res. 64, 453-482.
1715 1716 1717	688	Viechtbauer, W., 2017. Package 'metafor'. http://www.metafor-project.org
1718 1719	689	Wagner, R.J., Boulger, R.W. Jr., Oblinger, C.J., Smith, B.A., 2006. Guidelines and
1720 1721	690	standard procedures for continuous water-quality monitors—Station operation,
1722 1723	691	record computation, and data reporting: U.S. Geological Survey Techniques and
1724 1725	692	Methods 1–D3, 51 pp., http://pubs.water.usgs.gov/tm1d3.
1726 1727	693	Walles, B., Smaal, A.C., Herman, P.M.J., Ysebaert, T., 2016. Niche dimension differs
1728 1729 1730	694	among life-history stages of Pacific oysters in intertidal environments. Mar. Ecol.
1731 1732	695	Prog. Ser. 562, 113-122.
1733		
1734		
1735		

1737		
1738		
1739 1740	696	Warner, J.C., 2010. Using a composite grid approach in a complex coastal domain to
1741 1742	697	estimate estuarine residence time. Computers and Geosciences 36, 921–935.
1743 1744	698	Welschmeyer, N.A., 1994. Fluorometric analysis of Chlorophyll-a in the presence of
1745 1746	699	Chlorophyll-b and pheopigments. Limnol. Oceanogr. 39, 1985–1992.
1747 1748	700	Wheat, E.E., Ruesink, J.L., 2013. Commercially-cultured oysters (Crassostrea gigas)
1749 1750	701	exert top-down control on intertidal pelagic resources in Willapa Bay, Washington,
1751 1752 1752	702	USA. J. Sea Res. 81, 33-39.
1754 1755	703	Wiberg, P.L., Carr, J.A., Safak, I., Anutaliya, A., 2015. Quantifying the distribution and
1756 1757	704	influence of non-uniform bed properties in shallow coastal bays. Limnol. Oceanogr
1758 1759	705	Methods 13, 746-762.
1760 1761	706	Whyte, J.N.C., Englar, J.R., Carswell, B.L., 1990. Biochemical composition and energy
1762 1763	707	reserves in Crassostrea gigas exposed to different levels of nutrition. Aquaculture
1764 1765	708	90, 157–172.
1766 1767	709	Xue, H., Du, Y., 2010. Implementation of a wetting-and-drying model in simulating the
1768 1769 1770	710	Kennebec Androscoggin plume and the circulation in Casco Bay. Ocean Dynamics
1771	711	60, 341–357.
1773 1774	712	Zu Ermgassen, P.S.E., Gray, M.W., Langdon, C.J., Spalding, M.D., Brumbaugh, R.D.,
1775 1776	713	2013. Quantifying the historic contribution of Olympia oysters to filtration in Pacific
1777 1778	714	Coast (USA) estuaries: implications for restoration objectives. Aquatic Ecol. 47,
1779 1780	715	149-161.
1781		
1782		
1784		
1785		
1786		
1787		
1788		
1789		
1790		
1791		
1792		

717 FIGURE LEGENDS

Figure 1. Two mechanisms for the depletion of phytoplankton from a parcel of water by intertidal suspension-feeders. In the familiar case (a), the parcel is depleted during its passage across the intertidal zone on a single flood tide. In the case discussed in this paper (b), the parcel is depleted over several successive passages across the intertidal zone, returning due incomplete mixing in the channel at low slack tide. Parcels of water can be considered to have a residence time exceeding one tidal cycle. The length of time available for suspension-feeders to influence a parcel of water is controlled by the tidally averaged residual circulation (dotted arrow), rather than the tidal currents themselves. Figure 2. Water residence time on intertidal flats in Willapa Bay, Washington, from particle-tracking analysis of a 50 m-resolution numerical model with realistic intertidal bathymetry. Residence time (color scale, in units of tidal cycles) is the length of time that more than half of the 16 particles released in each 200 m square at high tide continue to be found in the intertidal zone at successive high tides, despite draining into the deeper channels in between. Solid contours give subtidal bathymetry at 5 m intervals. Box surrounds study site, as depicted in Fig. 3.

Figure 3. Tidal flat in Willapa Bay. The same area is depicted in (a) and (b), also corresponding to the boxed area in Fig. 2. (a) Aerial photograph overlaid with five stations where water properties and oyster performance were measured: South channel (ChS), North channel (ChN), Outer shore (ShOut), Middle shore (ShMid), and Inner shore (ShIn). Sensors were placed in 2007 for chlorophyll measurements (Chl) and in

1850		
1851	740	2000 for many onto of terms and solisity (TS). Overtons were overlanted on
1852	/40	2008 for measurements of temperature and samily (15). Oysters were outplanted on
1853		
1854	741	tiles for 10 months. (b) Chlorophyll-a ($\mu g L^{-1}$) along six transects one hour prior to
1855		
1856	742	afternoon high tide on 17 Aug 2008. The sensor recorded no data during three 50-sec
1857		
1858	743	periods, evident as gaps in transects.
1859		
1860	744	
1861		
1862	745	Figure 4. Temperature and salinity at the median water level on flood tides across a tidal
1863	,	
1864	746	flat in Willana Bay (a) Salinity at near-channel stations linked to unwelling at 48°N
1865	, 10	nac m ((mapa Day). (a) Sammely at near enamer stations mined to ap ((ening at 16 1)
1866	747	125°W Unwelling is plotted with a 4-day lag, which represents the best correlation
1867	, , ,	123 W. Opwening is plotted with a P day lag, which represents the best conclution
1868	7/8	(Table 2) Salinity is a daily average of two flood tides. The portion of this summer-long
1869	740	(Table 2). Samily is a daily average of two flood fides. The portion of this summer-long
1870	740	time series from 4 to 15 August is shown in more detail distinguishing each flood tide
1871	/49	time series from 4 to 15 August is shown in more detail, distinguishing each nood fide,
1872	750	in subsequent new sla (b) Colimity and (c) water terms are turn of a near shown all station and
1873	/50	In subsequent panels. (b) Samily and (c) water temperature at a near-channel station and
1874	751	dance stations toward share. Station as des one in Fig. 2
1875	/51	three stations toward shore. Station codes are in Fig. 3.
10/0	750	
1077	/52	
1879	752	
1880	/53	Figure 5. Water column fluorescence at four stations across a tidal flat in willapa Bay
1881	754	
1882	754	on each a) flood and b) ebb fide in 2007. Open symbols show values from one ShMid
1883		
1884	755	station where the sensor demonstrated strong drift during the last five days of
1885		
1886	756	deployment, and these values were not used in analyses. The following two panels show
1887		
1888	757	(c) fluorescence and (d) water temperature and salinity for six tidal cycles of data logged
1889		
1890	758	at 10-min intervals at one channel and one shore sensor during the early portion of the
1891		
1892	759	time series (2 Aug to 6 Aug 2007). Because fluorescence values exceeding 25 μ g L ⁻¹
1893		
1894	760	were censored, the data series is interrupted for ChN after the fourth tidal cycle, and no
1895		
1896	761	values were calculated around median water level Station codes are in Fig 3
1897	701	
1898	762	
1899	, 02	
1900		
1901		
1902		
1903		

1905 1906		
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917	763	Figure 6. Performance of Pacific oysters (Magallana = Crassostrea gigas) across a tidal
	764	flat in Willapa Bay. A) Shell height, B) Condition, as dry flesh mass relative to shell
	765	height. Open points are individual oysters; dark points show means per tile. Oysters
	766	were outplanted at 1 cm in Aug 2007 and collected in May 2008. X-axis is reversed so
	767	that shore is to left and channel to right, to align with Fig. 2 and 3. Station codes are
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	768	defined in Fig. 3.

Table 1. Comparison of observed and modeled depth-averaged root mean square tidal velocity at six stations in the main channel and intertidal zone of Willapa Bay. Subtidal stations are at depths relative to mean sea level. Intertidal stations are at depths relative to mean high water.

		Depth-averaged rms velocity					
Latitude	Longitude	Water depth	Observed	Model	% error		
Subtidal (cf. Banas and Hickey, 2005)							
46.694°N	124.097°W	10.1 m (MSL)	0.74 m/s	0.73 m/s	1%		
46.697	124.064	10.1	0.78	0.81	4		
46.696	123.973	9.75	0.61	0.78	28		
46.521	123.999	12.2	0.53	0.63	19		
Intertidal (19	9-28 Jul 2008)						
46.598	124.021	2.1 m (MHW)	0.21 m/s	0.22 m/s	5		
46.598	124.031	2.0	0.074	0.10	35		

Table 2. Model fit of linear models relating water properties measured from 8 Jun to 28 Aug 2008 at near-channel stations (ChN, ChS in Fig. 3) to coastal upwelling incorporating different lag times. Day of year was included as a predictor variable in all models to account for summer drought and seasonally-increasing salinity in Willapa Bay. Upwelling coefficients are estimates (standard error) from linear models, with significance as *(<0.05), **(<0.01), ***(<0.001). 63 daily values were available for ChN and 68 for ChS.

	Lag in days								
	No	No lag	1	2	3	4	5	6	7
	upwel								
	ling								
ChN	0.617	0.614	0.641	0.669	0.711	0.713	0.692	0.685	0.667
adjusted r ²									
ChN		0.004	0.013	0.018	0.022	0.023	0.021	0.020	0.016
Upwelling		(0.006)	(0.006)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.006)
coefficient			*	**	***	***	***	***	**
ChS	0.633	0.627	0.638	0.660	0.696	0.728	0.707	0.688	0.669
adjusted r ²									
ChS		0.0001	0.008	0.014	0.019	0.022	0.021	0.019	0.015
Upwelling		(0.006)	(0.006)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
coefficient				*	***	***	***	***	**

Table 3. Regression results relating salinity and temperature at shoreward sensors to channel station (ChS) with the most complete time series from 8 Jun to 28 Aug 2008. Model fit is provided as adjusted r² for lags of different numbers of tidal cycles. Sample size (N) declines by 3-6 for each lag, due to gaps during sensor cleaning, but results were similar when sample sizes were made equivalent within each sensor comparison. Mean differences come from paired t-tests (relative to ChS) without lags.

Lagged tidal cycles								
Station	N	No	1	2	3	4	Mean difference (95% CI)	
		lag						
Salinity								
ShIn	75	0.947	0.960	0.949	0.892	0.837	0.0009 (-0.085, 0.087)	
ShMid	103	0.942	0.947	0.946	0.936	0.928	-0.241 (-0.367, -0.115)	
ShOut	130	0.972	0.968	0.956	0.930	0.907	-0.153 (-0.226, -0.080)	
Temperature								
ShIn	75	0.768	0.083	0.626	0.013	0.486	0.580 (0.450, 0.711)	
ShMid	103	0.865	0.501	0.735	0.408	0.638	0.622 (0.490, 0.754)	
ShOut	130	0.925	0.504	0.790	0.407	0.907	0.298 (0.227, 0.369)	

Table 4. Results of paired t-tests relating fluorescence at shoreward stations to channel station (ChN) from 2 Aug to 15 Aug 2007. Values for each flood and ebb tide were based on an average of seven values logged at 10-min intervals around the median water level. Mean difference between each sensor and ChN is negative when fluorescence was lower towards shore. Two separate loggers were deployed 50 m apart at the Middle Shore station.

	Flood tides		Ebb tides	
	Mean difference (95% CI)	Ν	Mean difference (95% CI)	Ν
ShMid	-6.7 (-8.1, -5.4)	18	-5.0 (-6.3, -3.7)	20
ShMid	-4.2 (-5.9, -2.5)	16	0.0 (-1.7, 1.7)	8
ShOut	27(30,16)	10	01(2018)	13
SilOut	-2.7 (-3.7, -1.0)	17	-0.1 (-2.0, 1.0)	13

Supplemental material for Wheat EE, Banas NS, Ruesink JL. 2019. Multi-day water

residence time as a mechanism for physical and biological gradients across intertidal

flats. Estuarine Coastal and Shelf Science

Table S1. Position of oysters and sensors (YSI 6600) deployed intertidally on a wide tidal flat in Willapa Bay, Washington, USA. Station codes are North Channel (ChN), South Channel (ChS), Outer Shore (ShOut), Middle Shore (ShMid), and Inner Shore (ShIn). Latitude and longitude use WGS84 datum, and UTM uses 10T grid.

Data type	Station	Latitude	Longitude	Start	End	Elevation	Distance
		°N (UTM	°W (UTM	date	date	m	to
		Northing)	Easting)			MLLW	MLLW
							contour
							m
Oyster	ShMid	46.59702	124.02746	3 Aug	19 May	0.6	673
performance		(5150897)	(421302)	2007	2008		
Oyster	ShOut	46.59743	124.02550	3 Aug	19 May	0.6	530
performance		(5160940)	(421453)	2007	2008		
Oyster	ChS	46.59322	124.02153	3 Aug	19 May	0.6	118
performance		(5160469)	(421750)	2007	2008		
Oyster	ChN	46.59913	124.02274	3 Aug	19 May	0.6	318
performance		(5161126)	(421666)	2007	2008		
Oyster	ChS	46.59522	124.02618	3 Aug	19 May	0.6	231
performance		(5160695)	(421397)	2007	2008		
Salinity,	ShOut	46.59701	124.02643	8 Jun	28 Aug	0.05	600
Temperature		(5160895)	(421381)	2008	2008		
Salinity,	ShMid	46.59770	124.03008	8 Jun	28 Aug	0.5	880
Temperature		(5160975)	(421102)	2008	2008		
Salinity,	ChN	46.59917	124.02123	8 Jun	28 Aug	0.6	200
Temperature		(5161129)	(421781)	2008	2008		
Salinity,	ShIn	46.60188	124.03427	8 Jun	28 Aug	0.9	1200
Temperature		(5161444)	(420787)	2008	2008		
Salinity,	ChS	46.59592	124.02272	8 Jun	28 Aug	-0.2*	320
Temperature		(5160770)	(421663)	2008	2008		
Chlorophyll	ShMid	46.59735	124.03089	2 Aug	15 Aug	0.7	940
		(5160937)	(421039)	2007	2007		
Chlorophyll	ShMid	46.59724	124.03019	2 Aug	15 Aug	0.55	890
		(5160924)	(421093)	2007	2007		
Chlorophyll	ShOut	46.59637	124.02469	2 Aug	15 Aug	0.1	470
		(5160822)	(421513)	2007	2007		
Chlorophyll	ChN	46.59811	124.02356	2 Aug	15 Aug	-0.1	380
		(5161014)	(421602)	2007	2007		

*deployed for the first two weeks at +0.2 m MLLW

Table S2. Estimates for slope and intercept (regression coefficients, with standard error) relating water properties to distance from channel (in km). Six transects were sampled at 5-sec intervals on 17 Aug 2008 to measure surface water with a YSI 6600. N=Number of samples per transect. Intercept is at the start of each transect. Chlorophyll-a (Chl) values were adjusted from sensor fluorescence (0.319) based on calibration by bottle samples. Latitude and longitude use WGS84 datum, and UTM uses 10T grid; both are presented for the start and end of each transect.

Transect	Latitude N (UTM	Longitude W	Chl	Chl	Salinity	Salinity
	Northing)	(UTM Easting)	intercept	slope	intercept	slope
				km ⁻¹		km ⁻¹
1, n=14	46.59559	124.02041	4.23	-0.7135	29.64	-1.05
	(5160731)	(421840)	(0.11)	(0.3979)	(0.021)	(0.073)
	46.59596	124.02653				
	(5160778)	(421372)				
2, n=26	46.59705	124.02017	4.12	-2.7345	29.60	-1.35
	(5160893)	(421860)	(0.13)	(0.4185)	(0.017)	(0.058)
	46.59606	124.02665				
	(5160790)	(421362)				
3, n=20	46.59705	124.02017	4.45	-2.755	29.85	-1.73
	(5160893)	(421860)	(0.14)	(0.4600)	(0.035)	(0.118)
	46.59669	124.02768				
	(5160860)	(421284)				
4, n=27,	46.59804	124.02067	4.01	-3.974	29.48	-1.60
19	(5161003)	(421823)	(0.15)	(0.493)	(0.020)	(0.095)
	46.59705	124.02721				
	(5160900)	(4212321)				
5, n=23	46.59804	124.02086	4.44	-3.469	29.61	-1.32
	(5161003)	(421809)	(0.15)	(0.453)	(0.017)	(0.051)
	46.59744	124.02822				
	(5160944)	(421244)				
6, n=31	46.59980	124.02056	4.17	-4.327	NA	NA
	(5161199)	(421834)	(0.12)	(0.3915)		
	46.59752	124.02813				
	(5160953)	(421251)				