55 research outputs found

    Sol-gel derived tertiary bioactive glass–ceramic nanorods prepared via hydrothermal process and their composites with poly(Vinylpyrrolidone-Co-Vinylsilane)

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Bioactive glass (BG) nanoparticles have wide applications in bone repair due to their bone-bonding and biodegradable nature. In this work, nanometric rod-shaped ternary SiO2-CaO-P2O5 bioactive glass particles were prepared through sol-gel chemistry followed by a base-induced hydrothermal process at 130 ◦C and 170 ◦C for various times up to 36 h. This facile, low-temperature and surfactant-free hydrothermal process has shown to be capable of producing uniform nanorods and nanowires. One-dimensional growth of nanorods and the characteristics of siloxane bridging networks were dependent on the hydrothermal temperature and time. Hardened bioactive composites were prepared from BG nanorods and cryo-milled poly(vinylpyrrolidone-co-triethoxyvinylsilane) in the presence of ammonium phosphate as potential bone graft biomaterials. Covalent crosslinking has been observed between the organic and inorganic components within these composites. The ultimate compressive strength and modulus values increased with increasing co-polymer content, reaching 27 MPa and 500 MPa respectively with 30% co-polymer incorporation. The materials degraded in a controlled non-linear manner when incubated in phosphate-buffered saline from 6 h to 14 days. Fibroblast cell attachment and spreading on the composite were not as good as the positive control surfaces and suggested that they may require protein coating in order to promote favorable cell interactions

    Bone repair and regenerative biomaterials: Towards recapitulating the microenvironment

    Get PDF
    © 2019 by the authors. Biomaterials and tissue engineering scaffolds play a central role to repair bone defects. Although ceramic derivatives have been historically used to repair bone, hybrid materials have emerged as viable alternatives. The rationale for hybrid bone biomaterials is to recapitulate the native bone composition to which these materials are intended to replace. In addition to the mechanical and dimensional stability, bone repair scaffolds are needed to provide suitable microenvironments for cells. Therefore, scaffolds serve more than a mere structural template suggesting a need for better and interactive biomaterials. In this review article, we aim to provide a summary of the current materials used in bone tissue engineering. Due to the ever-increasing scientific publications on this topic, this review cannot be exhaustive; however, we attempted to provide readers with the latest advance without being redundant. Furthermore, every attempt is made to ensure that seminal works and significant research findings are included, with minimal bias. After a concise review of crystalline calcium phosphates and non-crystalline bioactive glasses, the remaining sections of the manuscript are focused on organic-inorganic hybrid materials

    Influence of crown design and material on chipping-resistance of all-ceramic molar crowns: An in vitro study

    Get PDF
    © 2018 by Wroclaw Medical University and Polish Dental Society. Background. All-ceramic restorations have become popular and the trend is ongoing. However, the incidence of chipping within the veneering layer has been a commonly reported failure in clinical practice. Objectives. The aim of this in vitro study was to evaluate the effect of ceramic crown design (monolithic vs bi-layered) and material on the chipping resistance of molar crowns submitted to compressive cyclic loading. Material and methods. Fifty identical epoxy resin replicas of a mandibular first molar with crown preparation were divided into 5 groups (n = 10) as follows: the MLD group – monolithic CAD/CAM lithium-disilicate glass-ceramic (LDGC) crowns; 30 zirconia cores were veneered with either feldspathic porcelain by hand-lay-ering technique (ZHL) or by heat-pressing technique (ZVP), or with milled LDGC veneers and subsequently fused to the cores (ZLD); 10 porcelain-fused-to-metal (PFM) crowns acted as a control group. All crowns were cemented using Panavia® F2.0 resin cement (Kuraray Dental, Tokyo, Japan). After storage in water at 37°C for 1 week, the specimens were subjected to compressive cyclic loading at the mesiobuccal cusp which was tilted at 30°. A load cycle of 50–450 N was used and specimens were maintained in an aqueous environment throughout 500,000 cycles in a universal testing machine (Instron, Norwood, USA). The data was statistically analyzed at 5% significant level with Fisher’s exact test and Kaplan-Meier survival analysis. Results. Significant differences in survival rates of the specimens used in the groups (p \u3c 0.001) were found. Specimens of the PFM, ZHL and ZVP groups underwent failures at different stages of the 500,000 fatigue cycles, while specimens of the MLD and ZLD groups survived the entire fatigue test. ZHL and ZVP crowns had the worst chipping-resistance, while PFM crowns performed slightly better. The Kaplan-Meier test revealed significantly higher survival rates for the MLD and ZLD specimens compared to the other 3 groups. Conclusions. The use of LDGC as a monolithic molar crown and as a veneer over a zirconia core resulted in superior resistance to cuspal chipping

    A novel technique for measurement of orthodontic mini-implant stability using the Osstell ISQ device

    Get PDF
    © 2019 by The EH Angle Education and Research Foundation, Inc. Objectives: To develop and validate a method for application of the Osstell ISQ device in the assessment of mini-implant stability. Materials and Methods: An adaptor was developed for attachment of Osstell\u27s SmartPeg onto a variety of orthodontic mini-implants. For validation of the adaptor, Benefit mini-implants were inserted into bone blocks that mimicked different stability conditions. The Osstell device was used to assess mini-implant stability with the adaptor (test measurement) and conventional SmartPeg attachment (gold-standard measurement). Implant stability quotient (ISQ) values were assessed for agreement, repeatability, and reproducibility. Results: Strong positive correlations were found between ISQ values obtained using the novel adaptor and the conventional attachment. Repeatability and reproducibility of ISQ values with the adaptor were similar to those obtained with the conventional attachment. Conclusions: A method was developed and validated to assess the stability of orthodontic mini-implants using the Osstell system. The novel mini-implant adaptor provided repeatable and reproducible measurements of mini-implant stability, which agreed with those obtained using a conventional SmartPeg attachment. This adaptor permits noninvasive stability assessment of various designs of mini-implants, most of which are incompatible with the conventional SmartPeg attachment

    Sustainable bio-based phenol-formaldehyde resoles using hydrolytically depolymerized kraft lignin

    Get PDF
    © 2017 by the authors. In this study bio-based bio-phenol-formaldehyde (BPF) resoles were prepared using hydrolytically depolymerized Kraft lignin (DKL) as bio-phenol to partially substitute phenol. The effects of phenol substitution ratio, weight-average molecular weight (Mw) of DKL and formaldehyde-to-phenol (F/P) ratio were also investigated to find the optimum curing temperature for BPF resoles. The results indicated that DKL with Mw ∼1200 g/mol provides a curing temperature of less than 180°C for any substitution level, provided that F/P ratios are controlled. Incorporation of lignin reduced the curing temperature of the resin, however, higher Mw DKL negatively affected the curing process. For any level of lignin Mw, the curing temperature was found to increase with lower F/P ratios at lower phenol substitution levels. At 25% and 50% phenol substitution, increasing the F/P ratio allows for synthesis of resoles with lower curing temperatures. Increasing the phenol substitution from 50% to 75% allows for a broader range of lignin Mw to attain low curing temperatures

    Type i collagen cleavage is essential for effective fibrotic repair after myocardial infarction

    Get PDF
    Efficient deposition of type I collagen is fundamental to healing after myocardial infarction. Whether there is also a role for cleavage of type I collagen in infarct healing is unknown. To test this, we undertook coronary artery occlusion in mice with a targeted mutation (Col1a1 r/r) that yields collagenase-resistant type I collagen. Eleven days after infarction, Col1a1 r/r mice had a lower mean arterial pressure and peak left ventricular systolic pressure, reduced ventricular systolic function, and worse diastolic function, compared with wild-type littermates. Infarcted Col1a1 r/r mice also had greater 30-day mortality, larger left ventricular lumens, and thinner infarct walls. Interestingly, the collagen fibril content within infarcts of mutant mice was not increased. However, circular polarization microscopy revealed impaired collagen fibril organization and mechanical testing indicated a predisposition to scar microdisruption. Three-dimensional lattices of collagenase-resistant fibrils underwent cell-mediated contraction, but the fibrils did not organize into birefringent collagen bundles. In addition, time-lapse microscopy revealed that, although cells migrated smoothly on wild-type collagen fibrils, crawling and repositioning on collagenase-resistant collagen was impaired. We conclude that type I collagen cleavage is required for efficient healing of myocardial infarcts and is critical for both dynamic positioning of collagen-producing cells and hierarchical assembly of collagen fibrils. This seemingly paradoxical requirement for collagen cleavage in fibrotic repair should be considered when designing potential strategies to inhibit matrix degradation in cardiac disease. © 2011 American Society for Investigative Pathology

    The role of bone sialoprotein in the tendon-bone insertion

    Get PDF
    © 2016 International Society of Matrix Biology. Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp-/- mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp-/- mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp-/- patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, Picrosirius Red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp-/- mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone

    A review of recent studies on the life history and ecology of European cephalopods with emphasis on species with the greatest commercial fishery and culture potential

    Get PDF
    With the depletion of many commercial fish stocks and an increasing demand for marine protein for human consumption, cephalopods have become more important as a fishery resource. In EU waters, cephalopod stocks are not routinely assessed and exploitation of these species by large-scale fisheries is largely unregulated. For sustainable exploitation, adequate assessment and scientifically-supported management strategies are needed. However, there is still a lack of data on stock status and inadequate knowledge of the life history and ecology of these species. The present review examined more than 200 scientific articles, on life history and ecology of European cephalopods, published since 2013. It describes recent contributions to knowledge in the context of previously identified research priorities, along with recent advances towards sustainable fishing and aquaculture. It also identifies outstanding knowledge gaps. While some priority areas, such as the development of the species identification guides and evaluation of climate change impacts on cephalopods, have seen significant advances, other challenges remain for the future. These include monitoring of the life history traits and fishery status for the main commercially exploited species in the area, implementation of improved species identification methods during scientific surveys and fisheries monitoring, development of tools to identify stock units, and the study of the environmental and anthropogenic impacts on the stocks of cephalopods inhabiting European waters.Versión del edito

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Flow stress and structure in two phase Zr-2.5% Nb

    No full text
    corecore