219 research outputs found

    Exoplanet interiors and habitability

    Get PDF
    More than 1000 exoplanets with a radius smaller than twice that of the Earth are currently known, mainly thanks to space missions dedicated to the search of exoplanets. Mass and radius estimates, which are only available for a fraction (∼ 10%) of the exoplanets, provide an indication of the bulk composition and interior structure and show that the diversity in exoplanets is far greater than in the Solar System. Geophysical studies of the interior of exoplanets are key to understanding their formation and evolution, and are also crucial for assessing their potential habitability since interior processes play an essential role in creating and maintaining conditions for water to exist at the surface or in subsurface layers. For lack of detailed observations, investigations of the interior of exoplanets are guided by the more refined knowledge already acquired about the Solar System planets and moons, and are heavily based on theoretical modelling and on studies of the behaviour of materials under the high pressure and temperature conditions in planets. Here we review the physical principles and methods used in modelling the interior and evolution of exoplanets with a rock or water/ice surface layer and identify possible habitats in or on exoplanets

    A generalized bayesian inference method for constraining the interiors of super Earths and sub-Neptunes

    Get PDF
    We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces. Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star's photospheric composition. We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncertainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core, mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmospheric models that are tailored for modeling thick and thin atmospheres, respectively. First, we validate our method against Neptune. Second, we apply it to synthetic exoplanets of fixed mass and determine the effect on interior structure and composition when (1) radius, (2) atmospheric model, (3) data uncertainties, (4) semi-major axes, (5) atmospheric composition (i.e., a priori assumption of enriched envelopes versus pure H/He envelopes), and (6) prior distributions are varied. Our main conclusions are: [...]Comment: Astronomy & Astrophysics, 597, A37, 17 pages, 11 figure

    Testing Lorentz symmetry with planetary orbital dynamics

    Get PDF
    Planetary ephemerides are a very powerful tool to constrain deviations from the theory of General Relativity using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.Comment: 12 pages, 2 figures, version accepted for publication in Phys. Rev.

    Determination of Rare Earth Elements, Sc, Y, Zr, Ba, Hf and Th in Geological Samples by ICP-MS after Tm Addition and Alkaline Fusion

    No full text
    International audienceWe present a revised method for the determination of concentrations of rare earth (REE) and other trace elements (Y, Sc, Zr, Ba, Hf, Th) in geological samples. Our analytical procedure involves sample digestion using alkaline fusion (NaOH-Na2O2) after addition of a Tm spike, co-precipitation on iron hydroxides, and measurement by sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). The procedure was tested successfully for various rock types (i.e., basalt, ultramafic rock, sediment, soil, granite), including rocks with low trace element abundances (sub ng g−1). Results obtained for a series of nine geological reference materials (BIR-1, BCR-2, UB-N, JP-1, AC-E, MA-N, MAG-1, GSMS-2, GSS-4) are in reasonable agreement with published working values

    The tides of Mercury and possible implications for its interior structure

    Get PDF
    The combination of the radio tracking of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft and Earth-based radar measurements of the planet's spin state gives three fundamental quantities for the determination of the interior structure of Mercury: mean density ρ, moment of inertia C, and moment of inertia of the outer solid shell Cm. This work focuses on the additional information that can be gained by a determination of the change in gravitational potential due to planetary tides, as parameterized by the tidal potential Love number k2. We investigate the tidal response for sets of interior models that are compatible with the available constraints (ρ, C, and Cm). We show that the tidal response correlates with the size of the liquid core and the mean density of material below the outer solid shell and that it is affected by the rheology of the outer solid shell of the planet, which depends on its temperature and mineralogy. For a mantle grain size of 1 cm, we calculate that the tidal k2 of Mercury is in the range 0.45 to 0.52. Some of the current models for the interior structure of Mercury are compatible with the existence of a solid FeS layer at the top of the core. Such a layer, if present, would increase the tidal response of the planet

    The phase diagram of NiSi under the conditions of small planetary interiors

    Get PDF
    The phase diagram of NiSi has been determined using in situ synchrotron X-ray powder diffraction multi-anvil experiments to 19 GPa, with further preliminary results in the laser-heated diamond cell reported to 60 GPa. The low-pressure MnP-structured phase transforms to two different high-pressure phases depending on the temperature: the ε-FeSi structure is stable at temperatures above ∼1100 K and a previously reported distorted-CuTi structure (with Pmmn symmetry) is stable at lower temperature. The invariant point is located at 12.8 ± 0.2 GPa and 1100 ± 20 K. At higher pressures, ε -FeSi-structured NiSi transforms to the CsCl structure with CsCl-NiSi as the liquidus phase above 30 GPa. The Clapeyron slope of this transition is -67 MPa/K. The phase boundary between the ε -FeSi and Pmmn structured phases is nearly pressure independent implying there will be a second sub-solidus invariant point between CsCl, ε -FeSi and Pmmn structures at higher pressure than attained in this study. In addition to these stable phases, the MnP structure was observed to spontaneously transform at room temperature to a new orthorhombic structure (also with Pnma symmetry) which had been detailed in previous ab initio simulations. This new phase of NiSi is shown here to be metastable

    Seismic Constraints on the Thickness and Structure of the Martian Crust from InSight

    Get PDF
    NASA¿s InSight mission [1] has for the first time placed a very broad-band seismometer on the surface of Mars. The Seismic Experiment for Interior Structure (SEIS) [2] has been collecting continuous data since early February 2019. The main focus of InSight is to enhance our understanding of the internal structure and dynamics of Mars, which includes the goal to better constrain the crustal thickness of the planet [3]. Knowing the present-day crustal thickness of Mars has important implications for its thermal evolution [4] as well as for the partitioning of silicates and heat-producing elements between the different layers of Mars. Current estimates for the crustal thickness of Mars are based on modeling the relationship between topography and gravity [5,6], but these studies rely on different assumptions, e.g. on the density of the crust and upper mantle, or the bulk silicate composition of the planet and the crust. The resulting values for the average crustal thickness differ by more than 100%, from 30 km to more than 100 km [7]. New independent constraints from InSight will be based on seismically determining the crustal thickness at the landing site. This single firm measurement of crustal thickness at one point on the planet will allow to constrain both the average crustal thickness of Mars as well as thickness variations across the planet when combined with constraints from gravity and topography [8]. Here we describe the determination of the crustal structure and thickness at the InSight landing site based on seismic receiver functions for three marsquakes compared with autocorrelations of InSight data [9].We acknowledge NASA, CNES, partner agencies and institutions (UKSA, SSO,DLR, JPL, IPGP-CNRS, ETHZ, IC, MPS-MPG) and the operators of JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEED SEIS data. InSight data is archived in the PDS, and a full list of archives in the Geosciences, Atmospheres, and Imaging nodes is at https://pds-geosciences.wustl.edu/missions/insight/. This work was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. ©2021, California Institute of Technology. Government sponsorship acknowledge

    Seismic detection of the martian core by InSight

    Get PDF
    A plethora of geophysical, geo- chemical, and geodynamical observations indicate that the terrestrial planets have differentiated into silicate crusts and mantles that surround a dense core. The latter consists primarily of Fe and some lighter alloying elements (e.g., S, Si, C, O, and H) [1]¿. The Martian meteorites show evidence of chalcophile element depletion, suggesting that the otherwise Fe-Ni- rich core likely contains a sulfide component, which influences physical state
    corecore