90 research outputs found

    Increased hippocampal accumulation of autophagosomes predicts short-term recognition memory impairment in aged mice

    Get PDF
    Constitutive macroautophagy involved in the turnover of defective long-lived proteins and organelles is crucial for neuronal homeostasis. We hypothesized that macroautophagic dysregulation in selective brain regions was associated with memory impairment in aged mice. We used the single-trial object recognition test to measure short-term memory in 18 aged mice compared to 22 young mice and employed immunohistochemistry to assess cellular distribution of proteins involved in the selective degradation of ubiquitinated proteins via macroautophagy. Values of the discrimination ratio (DR, a measure of short-term recognition memory performance) in aged mice were significantly lower than those in young mice (median, 0.54 vs. 0.67; p = 0.005, U test). Almost exclusively in aged mice, there were clusters of puncta immunoreactive for microtubule-associated protein 1 light chain 3 (LC3), ubiquitin- and LC3-binding protein p62, and ubiquitin in neuronal processes predominantly in the hippocampal formation, olfactory bulb/tubercle, and cerebellar cortex. The hippocampal burden of clustered puncta immunoreactive for LC3 and p62 exhibited inverse linear correlations with DR in aged mice (ρ = −0.48 and −0.55, p = 0.044 and 0.018, respectively, Spearman’s rank correlation). These findings suggest that increased accumulation of autophagosomes within neuronal processes in selective brain regions is characteristic of aging. The dysregulation of macroautophagy can adversely affect the turnover of aggregate-prone proteins and defective organelles, which may contribute to memory impairment in aged mice

    Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms

    Get PDF
    Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug—yohimbine, and an anti-anxiety drug—diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain–blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders—notably signal transduction and reactivity to environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as a possible new nosological domain

    GBR 12909 administration as a mouse model of bipolar disorder mania: mimicking quantitative assessment of manic behavior

    Get PDF
    Mania is a core feature of bipolar disorder (BD) that traditionally is assessed using rating scales. Studies using a new human behavioral pattern monitor (BPM) recently demonstrated that manic BD patients exhibit a specific profile of behavior that differs from schizophrenia and is characterized by increased motor activity, increased specific exploration, and perseverative locomotor patterns as assessed by spatial d. It was hypothesized that disrupting dopaminergic homeostasis by inhibiting dopamine transporter (DAT) function would produce a BD mania-like phenotype in mice as assessed by the mouse BPM. We compared the spontaneous locomotor and exploratory behavior of C57BL/6J mice treated with the catecholamine transporter inhibitor amphetamine or the selective DAT inhibitor GBR 12909 in the mouse BPM. We also assessed the duration of the effect of GBR 12909 by testing mice in the BPM for 3 h and its potential strain dependency by testing 129/SvJ mice. Amphetamine produced hyperactivity and increased perseverative patterns of locomotion as reflected in reduced spatial d values but reduced exploratory activity in contrast to the increased exploration observed in BD patients. GBR 12909 increased activity and reduced spatial d in combination with increased exploratory behavior, irrespective of inbred strain. These effects persisted for at least 3 h. Thus, selectively inhibiting the DAT produced a long-lasting cross-strain behavioral profile in mice that was consistent with that observed in manic BD patients. These findings support the use of selective DAT inhibition in animal models of the impaired dopaminergic homeostasis putatively involved in the pathophysiology of BD mania

    The 5-Choice Continuous Performance Test: Evidence for a Translational Test of Vigilance for Mice

    Get PDF
    Attentional dysfunction is related to functional disability in patients with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and Alzheimer's disease. Indeed, sustained attention/vigilance is among the leading targets for new medications designed to improve cognition in schizophrenia. Although vigilance is assessed frequently using the continuous performance test (CPT) in humans, few tests specifically assess vigilance in rodents.We describe the 5-choice CPT (5C-CPT), an elaboration of the 5-choice serial reaction (5CSR) task that includes non-signal trials, thus mimicking task parameters of human CPTs that use signal and non-signal events to assess vigilance. The performances of C57BL/6J and DBA/2J mice were assessed in the 5C-CPT to determine whether this task could differentiate between strains. C57BL/6J mice were also trained in the 5CSR task and a simple reaction-time (RT) task involving only one choice (1CRT task). We hypothesized that: 1) C57BL/6J performance would be superior to DBA/2J mice in the 5C-CPT as measured by the sensitivity index measure from signal detection theory; 2) a vigilance decrement would be observed in both strains; and 3) RTs would increase across tasks with increased attentional load (1CRT task<5CSR task<5C-CPT).C57BL/6J mice exhibited superior SI levels compared to DBA/2J mice, but with no difference in accuracy. A vigilance decrement was observed in both strains, which was more pronounced in DBA/2J mice and unaffected by response bias. Finally, we observed increased RTs with increased attentional load, such that 1CRT task<5CSR task<5C-CPT, consistent with human performance in simple RT, choice RT, and CPT tasks. Thus we have demonstrated construct validity for the 5C-CPT as a measure of vigilance that is analogous to human CPT studies

    Enhanced Fear Expression in a Psychopathological Mouse Model of Trait Anxiety: Pharmacological Interventions

    Get PDF
    The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB), or normal (NAB) anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i) for identifying biological factors underlying misguided conditioned fear responses and (ii) for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias

    Оценка качества образования на основе компетентностного подхода

    Get PDF
    В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход

    Traumatic stress and accelerated DNA methylation age: A meta-analysis

    Get PDF
    Background: Recent studies examining the association between posttraumatic stress disorder (PTSD) and accelerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age, have yielded mixed results. Methods: We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in association with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (combined N = 2186). Associations between demographic and cellular variables and accelerated DNA methylation age were also examined, as was the moderating influence of demographic variables. Results: Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma exposure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced significant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps = 0.028 and 0.016, respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated with accelerated DNA methylation age (all ps < 0.02). PTSD diagnosis and lifetime trauma exposure were not associated with advanced DNA methylation age. There was no evidence of moderation of the trauma or PTSD variables by demographic factors. Conclusions: Results suggest that traumatic stress is associated with advanced epigenetic age and raise the possibility that cells integral to immune system maintenance and responsivity play a role in this. This study highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated DNA methylation age and the importance of furthering our understanding of the neurobiological and health consequences of PTSD. © 201

    Enhancing discovery of genetic variants for posttraumatic stress disorder through integration of quantitative phenotypes and trauma exposure information

    Get PDF
    Background Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide association studies (GWASs). Methods A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms. Results GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million Veteran Program. Conclusions Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to increase discovery power through multivariate methods
    corecore