40 research outputs found

    Union Station, Tacoma, Washington : a design study for a surplus rail site

    Get PDF
    Thesis (M. Arch.)--Massachusetts Institute of Technology, Dept. of Architecture, 1982.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCHIncludes bibliographical references.Recent technological changes in railroads, mergers, major shifts in urban land use patterns, and declining rail passenger travel has resulted in a surplus of urban rail lands. These lands represent a significant resource for land poor cities. An unparalleled opportunity exists for major new intervention without the usual adverse effects of land assemblage and so called "urban renewal". This work is an urban design study for a 22 acre rail site and 15 acres of adjacent waterfront land in Tacoma, Washington. The site, including Union Station and its yards, is on the edge of Tacoma's central business district. Union Station represents the largest assembled parcel of developable land in the downtown area. An attempt is made to illustrate a possible site use scenario which reflects the divergent and often conflicting goals of various differing interests.by Jeffrey David Rhoads.M.Arch

    Work in Progress: Rigorously Assessing the Anecdotal Evidence of Increased Student Persistence in an Active, Blended, and Collaborative Mechanical Engineering Environment

    Get PDF
    This work in progress describes an ongoing study of an active, blended, and collaborative (ABC) course environment used in a core mechanical engineering course. This course has built on the growing body of literature citing active learning (Freeman et al., 2014), blended structures (Bowen & Ithaka, 2012), and collaborative engagement (Jeong & Chi, 2007) as positive influences on college and university science, technology, engineering, and math (STEM) outcomes. For the last six years, “Dynamics”, a core mechanical engineering course at a large public university, has utilized in-class activities, frequently-watched problem-solving videos, and a collaborative blog space to realize an ABC environment. On one key metric of course success, the rate of students who drop, fail, or withdraw from (DFW), the course has experienced near-constant improvements since the ABC structures were introduced. In this study, the authors utilize rigorous longitudinal methods to determine whether this drop in DFW rates can be directly attributed to increased implementation of ABC features. The authors hypothesize that as instructors become accustomed to the ABC environment and increase the level of in-class activity, use of blended resources, and collaboration, the likelihood of DFW in each subsequent year would drop. However, in the same time period, each subsequent class entered with higher levels of performance on proxy measures for prior knowledge. We therefore build a logistic regression model to predict individual-level DFW and determine whether the anecdotal drops in DFW that we observe can be attributed to the expansion of the ABC environment. More specifically, we predict likelihood of DFW based on students’ prior knowledge (grade in the preceding course, SAT math score), key demographics (gender, race/ethnicity), the semester and year they took Dynamics, their instructor, their year in school, and their major. We test for year fixed effects {year_t, t = 1, 2, ..., 7} to determine whether odds ratios for DFW consistently and significantly decrease over time. We also test for instructor effects, in particular for differences between the instructors who were involved in the design and development of the ABC environment and more independent instructors who only partially implemented the ABC course components. We anticipate results that will provide more rigorous, less biased, and efficient estimates for the individual- and class-level components that explain variance in DFW rates. These results would provide immediate implications for the next phase of our work, as we assess the next on-term implementation of the course in 2016. Our findings would also have long-term significance for other classes in mechanical engineering and related disciplines and for classes at other institutions that are considering implementing a comprehensive ABC learning environment

    Transforming a Dynamics Course to an Active, Blended, and Collaborative Format: Focus on the Faculty

    Get PDF
    Mechanical engineering programs are increasingly applying educational research by transforming courses to be more interactive and to use a blend of online and face-to-face materials. However, the process of an existing course adopting these new practices is not well studied, and even less is understood about the faculty experience from on-boarding to delivery of a new curriculum or pedagogy. In this study, we follow the translation of an active, blended, and collaborative (ABC) curriculum for a core dynamics course from a large public university (where the ABC curriculum was developed) to a small private university. We use interpretive phenomenology to focus on the lived experience of the instructor newly implementing these course materials, format, and pedagogical approach. Specifically, we address the following research questions: (1) What is the lived experience of a mechanical engineering instructor at a different institution as she adopts and adapts the provided materials and format? (2) How does the experience of this instructor evolve throughout the semester? We use rich qualitative data to understand the experience of the instructor, who taught this course in its prior format and, in Fall 2015, taught the “off-term” core dynamics course via the new ABC structure. Through weekly reflection prompts, pre- and post-semester interviews, and supplementary process data (e.g., notes of weekly meetings between the new implementer and ABC team at the large public university), we describe and characterize the multi-faceted instructor experience. This includes her experience learning about the curriculum and online tools, implementing the class and adjusting her teaching practices, and assessing her students’ engagement with the course and understanding of dynamics concepts. Our findings suggest further areas of inquiry for studies of faculty practices around curriculum adoption, including probing opportunities for cross-institutional collaborations to share materials and transform courses, interrogating variation in mechanical engineering department and student cultures, and studying sources of faculty development and support throughout the course transformation process

    Analyzing an Abbreviated Dynamics Concept Inventory and Its Role as an Instrument for Assessing Emergent Learning Pedagogies

    Get PDF
    The Dynamics Concept Inventory (DCI) is a validated assessment tool commonly used to evaluate student growth within core, gateway-level mechanics courses. This research explored the evaluative use of this tool within the context of Freeform – an emergent course system that buttresses active class meetings with blended and collaborative virtual learning environments, themselves founded upon extensive multimedia content and interactive forums – at Purdue University. The paper specifically considers a number of related issues including: (i) the thoughtful development (via expert content validation) and statistical reliability of an abbreviated DCI instrument, which is more amenable to in-class implementation than the much longer full DCI; (ii) the correlation of abbreviated-DCI performance with exam scores and final course grades for a dynamics course using the Freeform framework with an emphasis on both conceptual understanding and traditional problem-solving skills; and (iii) various inter-section performance metrics in a preliminary study on how an implementation of the abbreviated-DCI may help elucidate the impact of the instructor within the Freeform framework. The results of these analyses supported the validity and reliability of the abbreviated DCI tool, and demonstrated its usefulness in a formal research setting. The preliminary study suggested that the Freeform framework might normalize differences in instructor pedagogical choices and student performance across class sections. These findings indicate that the abbreviated DCI holds promise as a research instrument and lay the groundwork for future inquiry into the impact of the Freeform instructional framework on students and instructors alike

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Discovery of a Cosmological, Relativistic Outburst via its Rapidly Fading Optical Emission

    Get PDF
    We report the discovery by the Palomar Transient Factory (PTF) of the transient source PTF11agg, which is distinguished by three primary characteristics: (1) bright (R_peak = 18.3 mag), rapidly fading (ΔR = 4 mag in Δt = 2 days) optical transient emission; (2) a faint (R = 26.2 ± 0.2 mag), blue (g' – R = 0.17 ± 0.29 mag) quiescent optical counterpart; and (3) an associated year-long, scintillating radio transient. We argue that these observed properties are inconsistent with any known class of Galactic transients (flare stars, X-ray binaries, dwarf novae), and instead suggest a cosmological origin. The detection of incoherent radio emission at such distances implies a large emitting region, from which we infer the presence of relativistic ejecta. The observed properties are all consistent with the population of long-duration gamma-ray bursts (GRBs), marking the first time such an outburst has been discovered in the distant universe independent of a high-energy trigger. We searched for possible high-energy counterparts to PTF11agg, but found no evidence for associated prompt emission. We therefore consider three possible scenarios to account for a GRB-like afterglow without a high-energy counterpart: an "untriggered" GRB (lack of satellite coverage), an "orphan" afterglow (viewing-angle effects), and a "dirty fireball" (suppressed high-energy emission). The observed optical and radio light curves appear inconsistent with even the most basic predictions for off-axis afterglow models. The simplest explanation, then, is that PTF11agg is a normal, on-axis long-duration GRB for which the associated high-energy emission was simply missed. However, we have calculated the likelihood of such a serendipitous discovery by PTF and find that it is quite small (≈2.6%). While not definitive, we nonetheless speculate that PTF11agg may represent a new, more common (>4 times the on-axis GRB rate at 90% confidence) class of relativistic outbursts lacking associated high-energy emission. If so, such sources will be uncovered in large numbers by future wide-field optical and radio transient surveys

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey - The Hubble Space Telescope Observations, Imaging Data Products and Mosaics

    Get PDF
    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z∌1.5−8z\sim1.5-8, and to study Type Ia SNe beyond z>1.5z>1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of \sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.Comment: 39 pages, 25 figure

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions' effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior-several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people's initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.</p
    corecore