513 research outputs found

    First Measurement of the |t| Dependence of Incoherent J/ψ Photonuclear Production

    Get PDF
    The first measurement of the cross section for incoherent photonuclear production of J/ψ vector mesons as a function of the Mandelstam |t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, |y|<0.8, using ultraperipheral collisions of Pb nuclei at a center-of-mass energy per nucleon pair of sNN=5.02 TeV. This rapidity interval corresponds to a Bjorken-x range (0.3-1.4)×10-3. Cross sections are given in five |t| intervals in the range 0.04<|t|<1 GeV2 and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a |t| dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data

    Accessing the strong interaction between Λ baryons and charged kaons with the femtoscopy technique at the LHC

    Get PDF
    The interaction between Λ baryons and kaons/antikaons is a crucial ingredient for the strangeness S=0 and S=-2 sector of the meson–baryon interaction at low energies. In particular, the Lambda-Kbar might help in understanding the origin of states such as the Csi(1620), whose nature and properties are still under debate. Experimental data on Lambda-K and Lambda-Kbar systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of Λ–KK− and Λ–KK+ correlations obtained in the high-multiplicity triggered data sample in pp collisions at sqrt(s) = 13 TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednický–Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The Λ–KK+ correlations show the presence of several structures at relative momenta k* above 200 MeV/c, compatible with the Ω baryon, the , and resonances decaying into Λ–K− pairs. The low k* region in the Λ–KK+ also exhibits the presence of the state, expected to strongly couple to the measured pair. The presented data allow to access the ΛK+ and ΛK− strong interaction with an unprecedented precision and deliver the first experimental observation of the decaying into ΛK−

    First measurement of Λc+ production down to pT=0 in pp and p-Pb collisions at sNN=5.02 TeV

    Get PDF
    The production of prompt Lambda+c baryons has been measured at midrapidity in the transverse momentum interval 0 < pT < 1 GeV/c for the first time, in pp and p–Pb collisions at a center-of-mass energy per nucleon-nucleon collision √s NN = 5.02 TeV. The measurement was performed in the decay channel Lambda+c → pK0S by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The pT -integrated Lambda+c production cross sections in both collision systems were determined and used along with the measured yields in Pb–Pb collisions to compute the pT -integrated nuclear modification factors R pPb and R AA of Lambda+c baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The Lambda+c /D0 baryon-to-meson yield ratio is reported for pp and p–Pb collisions. Comparisons with models that include modified hadronization processes are presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions are discussed. A significant (3.7σ ) modification of the mean transverse momentum of Lambda+c baryons is seen in p–Pb collisions with respect to pp collisions, while the pT -integrated Lambda+c /D0 yield ratio was found to be consistent between the two collision systems within the uncertainties

    Closing in on critical net-baryon fluctuations at LHC energies: Cumulants up to third order in Pb–Pb collisions

    Get PDF
    Fluctuation measurements are important sources of information on the mechanism of particle production at LHC energies. This article reports the first experimental results on third-order cumulants of the net-proton distributions in Pb-Pb collisions at a center-of-mass energy √sNN = 5.02 TeV recorded by the ALICE detector. The results on the second-order cumulants of net-proton distributions at √sNN = 2.76 and 5.02TeV are also discussed in view of effects due to the global and local baryon number conservation. The results demonstrate the presence of long-range rapidity correlations between protons and antiprotons. Such correlations originate from the early phase of the collision. The experimental results are compared with HIJING and EPOS model calculations, and the dependence of the fluctuation measurements on the phase-space coverage is examined in the context of lattice quantum chromodynamics (LQCD) and hadron resonance gas (HRG) model estimations. The measured third-order cumulants are consistent with zero within experimental uncertainties of about 4% and are described well by LQCD and HRG predictions

    First Measurement of Antideuteron Number Fluctuations at Energies Available at the Large Hadron Collider

    Get PDF
    The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity (1?1 < 0.8) as a function of collision centrality in Pb-Pb collisions atv (NN)-N-s= 5.02 TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with a state-of-the-art coalescence calculation. While it describes the ratio of higher order cumulants of the antideuteron multiplicity distribution, it fails to describe quantitatively the magnitude of the correlation between antiproton and antideuteron production. On the other hand, thermal-statistical model calculations describe all the measured observables within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations

    First measurement of prompt and non-prompt D⁎+ vector meson spin alignment in pp collisions at s=13 TeV

    Get PDF
    This letter reports the first measurement of spin alignment, with respect to the helicity axis, for D*+ vector mesons and their charge conjugates from charm-quark hadronisation (prompt) and from beauty-meson decays (non-prompt) in hadron collisions. The measurements were performed at midrapidity (|y| D0 (-> K- pi+) pi+ decay products, in the D*+ rest frame, with respect to the D*+ momentum direction in the pp centre of mass frame. The rho_00 value for prompt D*+ mesons is consistent with 1/3, which implies no spin alignment. However, for non-prompt D*+ mesons an evidence of rho_00 larger than 1/3 is found. The measured value of the spin density element is in the interval, which is consistent with a Pythia 8 Monte Carlo simulation coupled with the EvtGen package, which implements the helicity conservation in the decay of D*+ meson from beauty mesons. In non-central heavy-ion collisions, the spin of the D*+ mesons may be globally aligned with the direction of the initial angular momentum and magnetic field. Based on the results for pp collisions reported in this letter it is shown that alignment of non-prompt D*+ mesons due to the helicity conservation coupled to the collective anisotropic expansion may mimic the signal of global spin alignment in heavy-ion collisions

    Hypertriton Production in p-Pb Collisions at √sNN = 5.02 TeV

    Get PDF
    The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of the production of Λ3H{\rm ^{3}_{\Lambda}\rm H} in p-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV is presented in this Letter. Its production yield measured in the rapidity interval -1 < y < 0 for the 40% highest multiplicity p-Pb collisions is dN/dy=[6.3±1.8(stat.)±1.2(syst.)]×107{\rm d} N /{\rm d} y =[\mathrm{6.3 \pm 1.8 (stat.) \pm 1.2 (syst.) ] \times 10^{-7}}. The measurement is compared with the expectations of statistical hadronisation and coalescence models, which describe the nucleosynthesis in hadronic collisions. These two models predict very different yields of the hypertriton in small collision systems such as p-Pb and therefore the measurement of dN/dy{\rm d} N /{\rm d} y is crucial to distinguish between them. The precision of this measurement leads to the exclusion with a significance larger than 6σ\sigma of some configurations of the statistical hadronisation, thus constraining the production mechanism of loosely bound states

    Multiplicity dependence of charged-particle production in pp, p–Pb, Xe–Xe and Pb–Pb collisions at the LHC

    Get PDF
    Multiplicity (Nch) distributions and transverse momentum (pT) spectra of inclusive primary charged particles in the kinematic range of |η| < 0.8 and 0.15 GeV/c < pT < 10 GeV/c are reported for pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-of-mass energies per nucleon pair ranging from √sNN = 2.76 TeV up to 13 TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the pT spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.publishedVersio

    Towards the understanding of the genuine three-body interaction for p–p–p and p–p–Λ\Lambda

    Get PDF
    Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incor- porated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect mea- surements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p–p–p and p–p–Lambda systems in terms of three-particle correlation functions car- ried out for pp collisions at √s = 13 TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle inter- action contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A nega- tive cumulant is found for the p–p–p system, hinting to the presence of a residual three-body effect while for p–p–Lambda the cumulant is consistent with zero. This measurement demon- strates the accessibility of three-baryon correlations at the LHC

    Measurement of beauty-strange meson production in Pb–Pb collisions at sNN=5.02TeV via non-prompt Ds + mesons

    Get PDF
    The production yields of non-prompt D_s^+ mesons, namely D_s^+ mesons from beauty-hadron decays, were measured for the first time as a function of the transverse momentum (pT) at midrapidity (|y| phi pi+, with phi -> K+ K-, in the 4 < pT < 36 GeV/c and 2 < pT < 24 GeV/c intervals for the 0–10% and 30–50% centrality classes, respectively. The measured yields of non-prompt D_S^+ mesons are compared to those of prompt D_s^+ and non-prompt D0 mesons by calculating the ratios of the production yields in Pb–Pb collisions and the nuclear modification factor RAA. The ratio between the RAA of non-prompt D_s^+ and prompt D_s^+ mesons, and that between the RAA of non-prompt D_s^+ and non-prompt D0 mesons in central Pb–Pb collisions are found to be on average higher than unity in the 4 < pT < 12 GeV/c interval with a statistical significance of about 1.6 sigma and 1.7 sigma, respectively. The measured RAA ratios are compared with the predictions of theoretical models of heavy-quark transport in a hydrodynamically expanding QGP that incorporate hadronisation via quark recombination
    corecore