1,330 research outputs found
Pancreatic β-Cell Death in Response to Pro-Inflammatory Cytokines Is Distinct from Genuine Apoptosis
A reduction in functional β-cell mass leads to both major forms of diabetes; pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and gamma-interferon (γ-IFN), activate signaling pathways that direct pancreatic β-cell death and dysfunction. However, the molecular mechanism of β-cell death in this context is not well understood. In this report, we tested the hypothesis that individual cellular death pathways display characteristic phenotypes that allow them to be distinguished by the precise biochemical and metabolic responses that occur during stimulus-specific initiation. Using 832/13 and INS-1E rat insulinoma cells and isolated rat islets, we provide evidence that apoptosis is unlikely to be the primary pathway underlying β-cell death in response to IL-1β+γ-IFN. This conclusion was reached via the experimental results of several different interdisciplinary strategies, which included: 1) tandem mass spectrometry to delineate the metabolic differences between IL-1β+γ-IFN exposure versus apoptotic induction by camptothecin and 2) pharmacological and molecular interference with either NF-κB activity or apoptosome formation. These approaches provided clear distinctions in cell death pathways initiated by pro-inflammatory cytokines and bona fide inducers of apoptosis. Collectively, the results reported herein demonstrate that pancreatic β-cells undergo apoptosis in response to camptothecin or staurosporine, but not pro-inflammatory cytokines.
DOI: 10.1371/journal.pone.002248
Security of ECQV-Certified ECDSA Against Passive Adversaries
We show that the elliptic curve Qu-Vanstone implicit certificate scheme (ECQV), when composed with the Elliptic Curve Digital Signature Algorithm (ECDSA), is secure against passive adversaries under the combined assumption of the random oracle model and the generic group model,---if the ECQV certificate itself is excluded from the signable message space, because of an attack of Kravitz. In contrast, we detail an attack on the composition of another implicit certificate scheme, proposed by Pintsov and Vanstone for Optimal Mail Certificates (OMC), and ECDSA. This composition attack forges an implicitly certified ECDSA
signature, and is passive in the sense of needing no interaction with the signer or the certification authority. (Pintsov and Vanstone did not propose combining OMC with ECDSA.
Root-Associated Streptomyces Isolates Harboring melC Genes Demonstrate Enhanced Plant Colonization
Streptomycetaceae assemble into the internal, root endophytic compartment of a wide variety of plants grown in soils worldwide, suggesting their ability to survive during root microbiome assembly. A previous study found that among four nonpathogenic, root-isolated Streptomyces strains (303, 299, CL18, and 136), only 303 and 299 colonized endophytic root tissue of the majority of Arabidopsis thaliana roots when inoculated with 34 other bacterial isolates. Here we demonstrate that 303 and 299 also colonize significantly more in singly inoculated A. thaliana seedlings. The genomes of melanin-producing 303 and 299 each contain two copies of the gene encoding tyrosinase (melC2 and melD2), an enzyme necessary for melanin biosynthesis in Streptomyces. These genes were not found in the genomes of 136 or CL18. Tyrosinase activity was detected in 303 and 299 whole cell and supernatant protein extracts, suggesting functional intracellular and extracellular enzymes.. Because tyrosinase oxidizes phenolic compounds and Streptomyces colonization of A. thaliana appears to be influenced by the phenolic compound salicylic acid (SA), we measured direct sensitivity of Streptomyces isolates to the phenolic compounds catechol, ferulic acid (FA), and SA in vitro. While both 303 and 299 showed higher numbers of surviving colonies than CL18 and 136 in the presence of catechol, only 303 demonstrated a higher number of surviving colonies when isolates were challenges with FA and SA. Finally, when seedlings were singly inoculated with a collection of related plant-associated Streptomyces isolates, colonization was significantly higher in isolates possessing two tyrosinase gene copies than isolates with zero or one gene copy. Overall, we describe a connection between microbial tyrosinase activity and increased seedling colonization of nonpathogenic Streptomyces isolates in A. thaliana. We propose tyrosinase activity in Streptomyces partially protects against harmful plant-produced phenolic compounds as they transition into an endophytic lifestyle
Maternal consumption of fish oil programs reduced adiposity in broiler chicks
Maternal intake of eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (22:6 n-3) has been associated with reduced adiposity in children, suggesting the possibility to program adipose development through dietary fatty acids before birth. This study determined if enriching the maternal diet in fish oil, the primary source of EPA and DHA, affected adipose development in offspring. Broiler chickens were used because they are obesity-prone, and because fatty acids provided to the embryo can be manipulated through the hen diet. Hens were fed diets supplemented (2.8% wt:wt) with corn oil (CO; n-6) or fish oil (FO; n-3) for 28 d. Chicks from both maternal diet groups were fed the same diet after hatch. Maternal FO consumption enriched chick adipose tissue in EPA and DHA and reduced adiposity by promoting more, but smaller, adipocytes. This adipocyte profile was paralleled by upregulated expression of the adipogenic regulator PPARGand its co-activator PPARGC1B, and reduced expression of LPL. Proteomics identified 95 differentially abundant proteins between FO and CO adipose tissue, including components of glucose metabolism, lipid droplet trafficking, and cytoskeletal organization. These results demonstrate that the maternal dietary fatty acid profile programs offspring adipose development
Thiobenzothiazole-modified hydrocortisones display anti-inflammatory activity with reduced impact on islet β-cell function
© 2015, American Society for Biochemistry and Molecular Biology Inc. All rights reserved. Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet β-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity
Ringed sideroblasts in βâ thalassemia
Symptomatic βâ thalassemia is one of the globally most common inherited disorders. The initial clinical presentation is variable. Although common hematological analyses are typically sufficient to diagnose the disease, sometimes the diagnosis can be more challenging. We describe a series of patients with βâ thalassemia whose diagnosis was delayed, required bone marrow examination in one affected member of each family, and revealed ringed sideroblasts, highlighting the association of this morphological finding with these disorders. Thus, in the absence of characteristic congenital sideroblastic mutations or causes of acquired sideroblastic anemia, the presence of ringed sideroblasts should raise the suspicion of βâ thalassemia.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136352/1/pbc26324.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136352/2/pbc26324_am.pd
Temporal metabolic profiling of bone healing in a caprine tibia segmental defect model
Bone tissue engineering is an emerging field of regenerative medicine, with a wide array of biomaterial technologies and therapeutics employed. However, it is difficult to objectively compare these various treatments during various stages of tissue response. Metabolomics is rapidly emerging as a powerful analytical tool to establish broad-spectrum metabolic signatures for a target biological system. Developing an effective biomarker panel for bone repair from small molecule data would provide an objective metric to readily assess the efficacy of novel therapeutics in relation to natural healing mechanisms. In this study we utilized a large segmental bone defect in goats to reflect trauma resulting in substantial volumetric bone loss. Characterization of the native repair capacity was then conducted over a period of 12 months through the combination of standard (radiography, computed tomography, histology, biomechanics) data and ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) metabolic profiling. Standard metrics demonstrated that samples formed soft callus structures that later mineralized. Small molecule profiles showed distinct temporal patterns associated with the bone tissue repair process. Specifically, increased lactate and amino acid levels at early time points indicated an environment conducive to osteoblast differentiation and extracellular matrix formation. Citrate and pyruvate abundances increased at later time points indicating increasing mineral content within the defect region. Taurine, shikimate, and pantothenate distribution profiles appeared to represent a shift toward a more homeostatic remodeling environment with the differentiation and activity of osteoclasts offsetting the earlier deposition phases of bone repair. The generation of a comprehensive metabolic reference portfolio offers a potent mechanism for examining novel biomaterials and can serve as guide for the development of new targeted therapeutics to improve the rate, magnitude, and quality of bone regeneration
Impact of Fatty-Acid Labeling of Bacillus subtilis Membranes on the Cellular Lipidome and Proteome
Developing cultivation methods that yield chemically and isotopically defined fatty acid (FA) compositions within bacterial cytoplasmic membranes establishes an in vivo experimental platform to study membrane biophysics and cell membrane regulation using novel approaches. Yet before fully realizing the potential of this method, it is prudent to understand the systemic changes in cells induced by the labeling procedure itself. In this work, analysis of cellular membrane compositions was paired with proteomics to assess how the proteome changes in response to the directed incorporation of exogenous FAs into the membrane of Bacillus subtilis. Key findings from this analysis include an alteration in lipid headgroup distribution, with an increase in phosphatidylglycerol lipids and decrease in phosphatidylethanolamine lipids, possibly providing a fluidizing effect on the cell membrane in response to the induced change in membrane composition. Changes in the abundance of enzymes involved in FA biosynthesis and degradation are observed; along with changes in abundance of cell wall enzymes and isoprenoid lipid production. The observed changes may influence membrane organization, and indeed the well-known lipid raft-associated protein flotillin was found to be substantially down-regulated in the labeled cells – as was the actin-like protein MreB. Taken as a whole, this study provides a greater depth of understanding for this important cell membrane experimental platform and presents a number of new connections to be explored in regard to modulating cell membrane FA composition and its effects on lipid headgroup and raft/cytoskeletal associated proteins
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
- …