2,179 research outputs found

    The RNA-binding protein, ZFP36L2, influences ovulation and oocyte maturation

    Get PDF
    ZFP36L2 protein destabilizes AU-rich element-containing transcripts and has been implicated in female fertility. In the C57BL/6NTac mouse, a mutation in Zfp36l2 that results in the decreased expression of a form of ZFP36L2 in which the 29 N-terminal amino acid residues have been deleted, ΔN-ZFP36L2, leads to fertilized eggs that arrest at the two-cell stage. Interestingly, homozygous ΔN-Zfp36l2 females in the C57BL/6NTac strain release 40% fewer eggs than the WT littermates (Ramos et al., 2004), suggesting an additional defect in ovulation and/or oocyte maturation. Curiously, the same ΔN-Zfp36l2 mutation into the SV129 strain resulted in anovulation, prompting us to investigate a potential problem in ovulation and oocyte maturation. Remarkably, only 20% of ΔN-Zfp36l2 oocytes in the 129S6/SvEvTac strain matured ex vivo, suggesting a defect on the oocyte meiotic maturation process. Treatment of ΔN-Zfp36l2 oocytes with a PKA inhibitor partially rescued the meiotic arrested oocytes. Furthermore, cAMP levels were increased in ΔN-Zfp36l2 oocytes, linking the cAMP/PKA pathway and ΔN-Zfp36l2 with meiotic arrest. Since ovulation and oocyte maturation are both triggered by LHR signaling, the downstream pathway was investigated. Adenylyl cyclase activity was increased in ΔN-Zfp36l2 ovaries only upon LH stimulation. Moreover, we discovered that ZFP36L2 interacts with the 3â€ČUTR of LHR mRNA and that decreased expression levels of Zfp36l2 correlates with higher levels of LHR mRNA in synchronized ovaries. Furthermore, overexpression of ZFP36L2 decreases the endogenous expression of LHR mRNA in a cell line. Therefore, we propose that lack of the physiological down regulation of LHR mRNA levels by ZFP36L2 in the ovaries is associated with anovulation and oocyte meiotic arrest.Fil: Ball, Christopher B.. University of North Carolina; Estados UnidosFil: Rodriguez, Karina F.. National Institutes of Health; Estados UnidosFil: Stumpo, Deborah J.. National Institutes of Health; Estados UnidosFil: Ribeiro Neto, Fernando. National Institutes of Health; Estados UnidosFil: Korach, Kenneth S.. National Institutes of Health; Estados UnidosFil: Blackshear, Perry J.. University of Duke; Estados Unidos. National Institutes of Health; Estados UnidosFil: Birnbaumer, Lutz. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Ramos, Silvia B. V.. University of North Carolina; Estados Unido

    An Interprofessional Approach to Teaching Advocacy Skills: Lessons from an Academic Medical-Legal Partnership

    Get PDF
    Medical students and educators recognize that preparing the next generation of health leaders to address seemingly intractable problems like health disparities should include advocacy training. Opportunities to acquire the knowledge and skills needed to effectively advocate at the policy level to promote systems-, community-, and population-level solutions are a critical component of such training. But formal advocacy training programs that develop and measure such skills are scarce. Even less common are interprofessional advocacy training programs that include legal and policy experts to help medical students learn such skills. This 2016–2017 pilot study started with a legislative advocacy training program for preclinical medical students that was designed to prepare them to meet with Capitol Hill representatives about a health justice issue. The pilot assessed the impact of adding an interprofessional education (IPE) dimension to the program, which in this case involved engaging law faculty and students to help the medical students understand and navigate the federal legislative process and prepare for their meetings. Results from the pilot suggest that adding law and policy experts to advocacy-focused training programs can improve medical students’ advocacy knowledge and skills and increase their professional identity as advocates

    Legal Needs and Health Outcomes for People with Cancer in Medical-Legal Partnership Programs: A Systematic Review

    Get PDF
    Medical-legal partnerships (MLPs) integrate lawyers into the medical team to address patients’ unmet legal needs that create barriers to good health and well-being (i.e., “health-harming legal needs”) and improve health outcomes. Given the growing popularity of MLP as an innovative healthcare model, this review has two objectives: to identify peer-reviewed literature measuring (1) cancer patients’ legal needs, and (2) outcomes for cancer patients after receiving MLP legal services. A systematic literature search was conducted in concordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for the period 2006- 2022. Four articles met the inclusion criteria for objective one: three articles, including one that also met the inclusion criteria for objective one, met the inclusion criteria for objective two, for a total of six articles. Literature confirms that when screened, cancer patients regularly struggle with health-harming legal needs. Further published research is needed to better identify and understand the unmet legal needs of cancer patients and the impact of MLPs on cancer patients’ outcomes

    The Academic Medical-Legal Partnership: Training the Next Generation of Health & Legal Professionals to Work Together to Advance Health Justice

    Get PDF
    As the national medical-legal partnership (MLP) movement grows, the need for doctors, nurses, social workers, other health professionals, and lawyers who have the knowledge, skills, and experience to collaborate effectively in this holistic healthcare approach is increasing. Given the unique role that institutions of higher education play in training students as they develop their professional identities, members of the Georgetown University Health Justice Alliance sought to build on prior efforts to define the MLP model by focusing on MLPs that exist in academic settings as a specific type of MLP. This report is based on the results of an environmental scan of MLPs that had evidence of engagement with a medical or law school and reflects the core elements of those MLPs as embodied by their objectives, activities, and unique features. The scan started with prior research conducted by the National Center for Medical-Legal Partnership, which categorized MLPs based on their targeted patient populations and identified eight core elements of infrastructure shared across MLPs. The Health Justice Alliance research team then collected data on the impact of interprofessional MLP learning on core undergraduate and graduate medical education knowledge, attitudes, and skill competencies sets for students. Other reports and articles describing specific MLP programs that create interprofessional education opportunities for law and medical students to learn and practice together also provided foundational background

    High-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategies

    Get PDF
    Cells control dynamic transitions in transcript levels by regulating transcription, processing, and/or degradation through an integrated regulatory strategy. Here, we combine RNA metabolic labeling, rRNA-depleted RNA-seq, and DRiLL, a novel computational framework, to quantify the level; editing sites; and transcription, processing, and degradation rates of each transcript at a splice junction resolution during the LPS response of mouse dendritic cells. Four key regulatory strategies, dominated by RNA transcription changes, generate most temporal gene expression patterns. Noncanonical strategies that also employ dynamic posttranscriptional regulation control only a minority of genes, but provide unique signal processing features. We validate Tristetraprolin (TTP) as a major regulator of RNA degradation in one noncanonical strategy. Applying DRiLL to the regulation of noncoding RNAs and to zebrafish embryogenesis demonstrates its broad utility. Our study provides a new quantitative approach to discover transcriptional and posttranscriptional events that control dynamic changes in transcript levels using RNA sequencing data.National Human Genome Research Institute (U.S.) (Centers for Excellence in Genomics Science 1P50HG006193-01)Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Pioneer Award)Massachusetts Institute of Technology. William Asbjornsen Albert Memorial FellowshipXerox Fellowship Progra

    Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan.

    Get PDF
    The timing of puberty is highly variable and is associated with long-term health outcomes. To date, understanding of the genetic control of puberty timing is based largely on studies in women. Here, we report a multi-trait genome-wide association study for male puberty timing with an effective sample size of 205,354 men. We find moderately strong genomic correlation in puberty timing between sexes (rg = 0.68) and identify 76 independent signals for male puberty timing. Implicated mechanisms include an unexpected link between puberty timing and natural hair colour, possibly reflecting common effects of pituitary hormones on puberty and pigmentation. Earlier male puberty timing is genetically correlated with several adverse health outcomes and Mendelian randomization analyses show a genetic association between male puberty timing and shorter lifespan. These findings highlight the relationships between puberty timing and health outcomes, and demonstrate the value of genetic studies of puberty timing in both sexes

    Uncovering treatment burden as a key concept for stroke care: a systematic review of qualitative research

    Get PDF
    <b>Background</b> Patients with chronic disease may experience complicated management plans requiring significant personal investment. This has been termed ‘treatment burden’ and has been associated with unfavourable outcomes. The aim of this systematic review is to examine the qualitative literature on treatment burden in stroke from the patient perspective.<p></p> <b>Methods and findings</b> The search strategy centred on: stroke, treatment burden, patient experience, and qualitative methods. We searched: Scopus, CINAHL, Embase, Medline, and PsycINFO. We tracked references, footnotes, and citations. Restrictions included: English language, date of publication January 2000 until February 2013. Two reviewers independently carried out the following: paper screening, data extraction, and data analysis. Data were analysed using framework synthesis, as informed by Normalization Process Theory. Sixty-nine papers were included. Treatment burden includes: (1) making sense of stroke management and planning care, (2) interacting with others, (3) enacting management strategies, and (4) reflecting on management. Health care is fragmented, with poor communication between patient and health care providers. Patients report inadequate information provision. Inpatient care is unsatisfactory, with a perceived lack of empathy from professionals and a shortage of stimulating activities on the ward. Discharge services are poorly coordinated, and accessing health and social care in the community is difficult. The study has potential limitations because it was restricted to studies published in English only and data from low-income countries were scarce.<p></p> <b>Conclusions</b> Stroke management is extremely demanding for patients, and treatment burden is influenced by micro and macro organisation of health services. Knowledge deficits mean patients are ill equipped to organise their care and develop coping strategies, making adherence less likely. There is a need to transform the approach to care provision so that services are configured to prioritise patient needs rather than those of health care systems

    Evidence of a Causal Association Between Insulinemia and Endometrial Cancer: A Mendelian Randomization Analysis.

    Get PDF
    BACKGROUND: Insulinemia and type 2 diabetes (T2D) have been associated with endometrial cancer risk in numerous observational studies. However, the causality of these associations is uncertain. Here we use a Mendelian randomization (MR) approach to assess whether insulinemia and T2D are causally associated with endometrial cancer. METHODS: We used single nucleotide polymorphisms (SNPs) associated with T2D (49 variants), fasting glucose (36 variants), fasting insulin (18 variants), early insulin secretion (17 variants), and body mass index (BMI) (32 variants) as instrumental variables in MR analyses. We calculated MR estimates for each risk factor with endometrial cancer using an inverse-variance weighted method with SNP-endometrial cancer associations from 1287 case patients and 8273 control participants. RESULTS: Genetically predicted higher fasting insulin levels were associated with greater risk of endometrial cancer (odds ratio [OR] per standard deviation = 2.34, 95% confidence internal [CI] = 1.06 to 5.14, P = .03). Consistently, genetically predicted higher 30-minute postchallenge insulin levels were also associated with endometrial cancer risk (OR = 1.40, 95% CI = 1.12 to 1.76, P = .003). We observed no associations between genetic risk of type 2 diabetes (OR = 0.91, 95% CI = 0.79 to 1.04, P = .16) or higher fasting glucose (OR = 1.00, 95% CI = 0.67 to 1.50, P = .99) and endometrial cancer. In contrast, endometrial cancer risk was higher in individuals with genetically predicted higher BMI (OR = 3.86, 95% CI = 2.24 to 6.64, P = 1.2x10(-6)). CONCLUSION: This study provides evidence to support a causal association of higher insulin levels, independently of BMI, with endometrial cancer risk.This study was supported by MRC grant MC_UU_12015/1 and by the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement n° 115372 (contributions from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies). ANECS recruitment was supported by project grants from the National Health and Medical Research Council of Australia (ID#339435), The Cancer Council Queensland (ID#4196615) and Cancer Council Tasmania (ID#403031 and ID#457636). SEARCH recruitment was funded by a programme grant from Cancer Research UK [C490/A10124]. Case genotyping was supported by the National Health and Medical Research Council (ID#552402). Control data was generated by the Wellcome Trust Case Control Consortium (WTCCC), and a full list of the investigators who contributed to the generation of the data is available from the WTCCC website. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. Funding for this project was provided by the Wellcome Trust under award 085475. Recruitment of the QIMR controls was supported by the National Health and Medical Research Council of Australia (NHMRC). The University of Newcastle, the Gladys M Brawn Senior Research Fellowship scheme, The Vincent Fairfax Family Foundation, the Hunter Medical Research Institute and the Hunter Area Pathology Service all contributed towards the costs of establishing the Hunter Community Study. K.T.N. was supported by the Gates Cambridge Trust. R.K.S. is supported by the Wellcome Trust (grant number WT098498). A.B.S. is supported by the National Health and Medical Research Council (NHMRC) Fellowship Scheme. D.F.E. is a Principal Research Fellow of Cancer Research UK. A.M.D is supported by the Joseph Mitchell Trust.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/jnci/djv17

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
    • 

    corecore