35 research outputs found

    The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes

    Get PDF
    BACKGROUND: Non-long terminal repeat (non-LTR) retrotransposons have contributed to shaping the structure and function of genomes. In silico and experimental approaches have been used to identify the non-LTR elements of the urochordate Ciona intestinalis. Knowledge of the types and abundance of non-LTR elements in urochordates is a key step in understanding their contribution to the structure and function of vertebrate genomes. RESULTS: Consensus elements phylogenetically related to the I, LINE1, LINE2, LOA and R2 elements of the 14 eukaryotic non-LTR clades are described from C. intestinalis. The ascidian elements showed conservation of both the reverse transcriptase coding sequence and the overall structural organization seen in each clade. The apurinic/apyrimidinic endonuclease and nucleic-acid-binding domains encoded upstream of the reverse transcriptase, and the RNase H and the restriction enzyme-like endonuclease motifs encoded downstream of the reverse transcriptase were identified in the corresponding Ciona families. CONCLUSIONS: The genome of C. intestinalis harbors representatives of at least five clades of non-LTR retrotransposons. The copy number per haploid genome of each element is low, less than 100, far below the values reported for vertebrate counterparts but within the range for protostomes. Genomic and sequence analysis shows that the ascidian non-LTR elements are unmethylated and flanked by genomic segments with a gene density lower than average for the genome. The analysis provides valuable data for understanding the evolution of early chordate genomes and enlarges the view on the distribution of the non-LTR retrotransposons in eukaryotes

    Evolutionary genomics of the recently duplicated amphioxus Hairy genes

    Get PDF
    Amphioxus Hairy genes have gone through a number of lineage-specific duplications, resulting in eight members, some of which are differentially expressed in the embryo. In order to gain insights into the evolution and function of this gene family we have compared their genomic structure and searched for conserved non-coding sequence elements. We have found that introns have been lost independently from these genes at least twice and after the duplication events. By carrying out phylogenetic footprinting between paralogues expressed in the embryo, we have found a differential distribution of conserved elements that could explain the limited overlap in expression patterns of Hairy genes in the amphioxus embryo. Furthermore, clustering of RBP-Jk binding sites in these conserved elements suggests that amphioxus Hairy genes are downstream targets of the Notch signaling pathway, as occurs in vertebrates. All of this evidence suggests that amphioxus Hairy genes have gone through a process of subfunctionalization shortly after their duplication, representing an extreme and rapid case of the duplication-degeneration-complementation model

    Amphioxus functional genomics and the origins of vertebrate gene regulation.

    Get PDF
    Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations

    11. Helen Brooke Taussig

    No full text

    Elements transposables de tipus non-LTR als ascidis, amfioxs i àgnats

    Get PDF
    [cat] Els animals estan agrupats en grans grups o files. Aquestes agrupacions representen organismes que presenten característiques que els hi són pròpies i diferents a les que presenten altres organismes. Aquest treball es centra en l'estudi dels cordats; format pels subfiles dels urocordats, els cefalocordats i els vertebrats. Els elements transposables són un conjunt molt heterogeni de seqüències que es caracteritzen per la seva capacitat de moure's al llarg d'un genoma i per la presència en múltiples còpies per genoma. Aquests elements, a conseqüència de les característiques que els hi són pròpies poden produir efectes deleteris en el genoma que els allotja tot i que si es troben regulats per mecanismes de control de l'hoste poden arribar a ser beneficiosos ja que n'augmenten el potencial evolutiu. Els estudis d'aquests elements en els cordats gnatostomats com l'home han evidenciat la seva massiva presència. Ja que aquests elements deuen haver condicionat l'evolució dels genomes dels gnatostomats, en aquest treball es va voler establir la participació dels elements transposables de tipus non-LTR en els organismes que es troben en la transició dels cordats pre-vertebrats cap als vertebrats. Així, utilitzant aproximacions in vitro i in silico s'ha determinat el tipus i nombre d'aquests elements en els genomes de l'ascidi Ciona intestinalis, el cefalocordat Branchiostoma floridae i l'àgnat Myxine glutinosa. Les diferents metodologies ens han permès determinar clarament l'estructura de 5 retrotransposons non-LTR en el genoma de l'ascidi, 6 en el de l'amfiox i 1 en el de la mixina. Els baixos números de còpies observats (<200 còpies/genoma haploid) en l'ascidi i l'amfiox mostren com la gran explosió d'aquests elements es va produir en els vertebrats ja que el vertebrat basal M. glutinosa ja presenta valors significativament elevats (~50000 còpies per genoma haploid). A més l'absència de metilació del elements de l'ascidi i l'amfiox però no en la mixina suggereix que la utilització d'aquest marcador epigenètic de l'expressió gènica hauria estat una coopció exclusiva dels vertebrats i no pas de tots els cordats. Per altra banda, evidències indirectes de l'activitat d'aquests elements suggeririen que aquests elements podrien ser actius en tots els genomes que s'han analitzat en aquest treball.[eng] The animal kingdom is divided in huge groups of animals or phyla. These groups represent animals which share some particular traits that make them distinguishable from other animals. This work is based on the study of the chordates, which include the urochordate, cephalochordate and vertebrate subphyla. The transposable elements are an heterogeneous array of sequences characterized by their capacity of self mobilization along the host genome and to be present in multiple copies. These elements, as a consequence of their characteristics, could be deleterious to the host but the presence of control mechanisms by the host or the element itself might allow a beneficial relationship as these elements increase the evolbability of the genome. The studies of transposable elements in gnathostomate vertebrates, as humans, have revealed their massive presence on the host genome. As these elements should have participated in the evolution of gnathostomate subphylum, this work has tried to elucidate the role of non-LTR retrotransposons in the evolution of the organisms that appeared during the transition from the prevertebrate chordates to the vertebrates. Using in vitro and in silico approaches, we have determined the kind and number of these elements in the genome of an ascidian (Ciona intestinalis), the cephalochordate amphioxus (Branchiostoma floridae) and the agnathan hagfish (Myxine glutinosa). These approaches allowed us to clearly determine the structure of 5 non-LTR retrotransposon in the ascidian genome, 6 in amphioxus and 1 in hagfish. The low copy number observed for these elements in the genomes of the ascidian and amphioxus (less than 200 copies per haploid genome) clearly shows that the great increase of these elements occurred in the vertebrates, because the hagfish shows a number of copies similar to those in other fishes (~50000 copies per haploid genome). In addition, the absence of methylation in the non-LTR retrotransposons of the ascidian and amphioxus, but not in hagfish, suggests that the use of this epigenetic marker should be coopted in the vertebrate lineage. Even more, indirect results point to the presence of active elements in the host genome of the three studied subphyla

    The Origin of Patterning Systems in Bilateria—Insights from the Hox and ParaHox Genes in Acoelomorpha

    Get PDF
    AbstractHox and ParaHox genes constitute two families of developmental regulators that pattern the Anterior–Posterior body axis in all bilaterians. The members of these two groups of genes are usually arranged in genomic clusters and work in a coordinated fashion, both in space and in time. While the mechanistic aspects of their action are relatively well known, it is still unclear how these systems evolved. For instance, we still need a proper model of how the Hox and ParaHox clusters were assembled over time. This problem is due to the shortage of information on gene complements for many taxa (mainly basal metazoans) and the lack of a consensus phylogenetic model of animal relationships to which we can relate our new findings. Recently, several studies have shown that the Acoelomorpha most probably represent the first offshoot of the Bilateria. This finding has prompted us, and others, to study the Hox and ParaHox complements in these animals, as well as their activity during development. In this review, we analyze how the current knowledge of Hox and ParaHox genes in the Acoelomorpha is shaping our view of bilaterian evolution

    The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes

    No full text
    Background: Non-long terminal repeat (non-LTR) retrotransposons have contributed to shaping the structure and function of genomes. In silico and experimental approaches have been used to identify the non-LTR elements of the urochordate Ciona intestinalis. Knowledge of the types and abundance of non-LTR elements in urochordates is a key step in understanding their contribution to the structure and function of vertebrate genomes. Results: Consensus elements phylogenetically related to the I, LINE1, LINE2, LOA and R2 elements of the 14 eukaryotic non-LTR clades are described from C. intestinalis. The ascidian elements showed conservation of both the reverse transcriptase coding sequence and the overall structural organization seen in each clade. The apurinic/apyrimidinic endonuclease and nucleic-acid-binding domains encoded upstream of the reverse transcriptase, and the RNase H and the restriction enzyme-like endonuclease motifs encoded downstream of the reverse transcriptase were identified in the corresponding Ciona families. Conclusions: The genome of C. intestinalis harbors representatives of at least five clades of non-LTR retrotransposons. The copy number per haploid genome of each element is low, less than 100, far below the values reported for vertebrate counterparts but within the range for protostomes. Genomic and sequence analysis shows that the ascidian non-LTR elements are unmethylated and flanked by genomic segments with a gene density lower than average for the genome. The analysis provides valuable data for understanding the evolution of early chordate genomes and enlarges the view on the distribution of the non-LTR retrotransposons in eukaryotes

    Schematic representation of the amphiouxus non-LTR elements and the phylogenetic relationships

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Getting closer to a pre-vertebrate genome: the non-LTR retrotransposons of "</p><p>International Journal of Biological Sciences 2006;2(2):48-53.</p><p>Published online 10 Apr 2006</p><p>PMCID:PMC1458424.</p><p>© Ivyspring International Publisher. This is an open access article. Reproduction is permitted for personal and noncommerical use, provided that the article is in whole, unmodified, and properly cited.</p> (A) Phylogenetic tree based on the reverse transcriptase sequence with only the branch points (and neighbor-joining bootstrap support) leading to the major 14 clades of non-LTR elements. (B) Schematic representation of the characterised domains. The APE domains and RT blocks are numbered below each element. (C) The main features (length, copy number, assembled composites, range of similarity) defining each non-LTR retrotransposon clade are indicate
    corecore