248 research outputs found

    Cyclotron harmonics in opacities of isolated neutron star atmospheres

    Full text link
    Some of X-ray dim isolated neutron stars (XDINS) and central compact objects in supernova remnants (CCO) show absorption features in their thermal soft X-ray spectra. It has been hypothesized that these features could be due to the periodic peaks in free-free absorption opacities, caused by either Landau quantization of electron motion in magnetic fields B<10^{11} G or analogous quantization of ion motion in magnetic fields B>10^{13} G. Here, I review the physics behind cyclotron quantum harmonics in free-free photoabsorption, discuss different approximations for their calculation, and explain why the ion cyclotron harmonics (beyond the fundamental) cannot be observed.Comment: 12 pages, 5 figures. In v.5, a typo (missed sign factor) in Eq.(9) is fixe

    The structure of sperm Izumo1 reveals unexpected similarities with Plasmodium invasion proteins.

    Get PDF
    Fertilization, the culminating event in sexual reproduction, occurs when haploid sperm and egg recognize each other and fuse to form a diploid zygote. In mammals this process critically depends on the interaction between Izumo1, a protein exposed on the equatorial segment of acrosome-reacted sperm, and the egg plasma-membrane-anchored receptor Juno [1,2]. The molecular mechanism triggering gamete fusion is unresolved because both Izumo1 and Juno lack sequence similarity to known membrane fusogens. Here we report the crystal structure of Izumo1, which reveals a membrane distal region composed of a four-helix bundle connected to a carboxy-terminal immunoglobulin (Ig)-like domain through a β-hairpin stabilized by disulfide bonds. Remarkably, different regions of Izumo1 display significant structural similarities to two proteins expressed by the invasive sporozoite stage of Plasmodium parasites: SPECT1, which is essential for host cell traversal and hepatocyte invasion [3]; and TRAP, which is necessary for gliding motility and invasion [4]. These observations suggest a link between the molecular mechanisms underlying host cell invasion by the malaria parasite and gamete membrane fusion at fertilization. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved

    TAT-Mediated Transduction of MafA Protein In Utero Results in Enhanced Pancreatic Insulin Expression and Changes in Islet Morphology

    Get PDF
    Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3), the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero

    The International Virus Bioinformatics Meeting 2023

    Get PDF
    The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24&ndash;26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting

    Unraveling the Genetics of Human Obesity

    Get PDF
    The use of modern molecular biology tools in deciphering the perturbed biochemistry and physiology underlying the obese state has proven invaluable. Identifying the hypothalamic leptin/melanocortin pathway as critical in many cases of monogenic obesity has permitted targeted, hypothesis-driven experiments to be performed, and has implicated new candidates as causative for previously uncharacterized clinical cases of obesity. Meanwhile, the effects of mutations in the melanocortin-4 receptor gene, for which the obese phenotype varies in the degree of severity among individuals, are now thought to be influenced by one's environmental surroundings. Molecular approaches have revealed that syndromes (Prader-Willi and Bardet-Biedl) previously assumed to be controlled by a single gene are, conversely, regulated by multiple elements. Finally, the application of comprehensive profiling technologies coupled with creative statistical analyses has revealed that interactions between genetic and environmental factors are responsible for the common obesity currently challenging many Westernized societies. As such, an improved understanding of the different “types” of obesity not only permits the development of potential therapies, but also proposes novel and often unexpected directions in deciphering the dysfunctional state of obesity

    Tissue Doppler Imaging can be useful to distinguish pathological from physiological left ventricular hypertrophy: a study in master athletes and mild hypertensive subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transthoracic echocardiography left ventricular wall thickness is often increased in master athletes and it results by intense physical training. Left Ventricular Hypertrophy can also be due to a constant pressure overload. Conventional Pulsed Wave (PW) Doppler analysis of diastolic function sometimes fails to distinguish physiological from pathological LVH.</p> <p>The aim of this study is to evaluate the role of Pulsed Wave Tissue Doppler Imaging in differentiating pathological from physiological LVH in the middle-aged population.</p> <p>Methods</p> <p>we selected a group of 80 master athletes, a group of 80 sedentary subjects with essential hypertension and an apparent normal diastolic function at standard PW Doppler analysis. The two groups were comparable for increased left ventricular wall thickness and mass index (134.4 ± 19.7 vs 134.5 ± 22.1 gr/m2; p > .05). Diastolic function indexes using the PW technique were in the normal range for both.</p> <p>Results</p> <p>Pulsed Wave TDI study of diastolic function immediately distinguished the two groups. While in master athletes the diastolic TDI-derived parameters remained within normal range (E' 9.4 ± 3.1 cm/sec; E/E' 7.8 ± 2.1), in the hypertensive group these parameters were found to be constantly altered, with mean values and variation ranges always outside normal validated limits (E' 7.2 ± 2.4 cm/sec; E/E' 10.6 ± 3.2), and with E' and E/E' statistically different in the two groups (p < .001).</p> <p>Conclusion</p> <p>Our study showed that the TDI technique can be an easy and validated method to assess diastolic function in differentiating normal from pseudonormal diastolic patterns and it can distinguish physiological from pathological LVH emphasizing the eligibility certification required by legal medical legislation as in Italy.</p

    PAX3 Expression in Normal Skin Melanocytes and Melanocytic Lesions (Naevi and Melanomas)

    Get PDF
    Background Cutaneous Malignant Melanoma is an aggressive form of skin cancer, arising in cutaneous melanocytes. The transcription factor PAX3 regulates melanocyte specification from neural crest cells during development but expression in differentiated melanocytes is uncertain. By contrast it is frequently found in melanomas and naevi and is a marker for melanoma staging and detection. In this study we analysed the expression of PAX3 across the spectrum of melanocytic cells, from normal melanocytes to cells of benign and malignant lesions to better assess its function in these various tissues. Pax3 and PAX3 (italicized) refer to the mouse and human gene, respectively; whereas Pax3 and PAX3 (non-italicized) refer to the corresponding mouse and human protein. Methodology and Principal Findings PAX3 expression was analysed by immunohistochemistry and qRT-PCR. Immunofluorescence was used for co-expression with differentiation, migration and survival markers. As expected PAX3 expression was observed in naevi and melanoma cells. It was also found in melanocytes of normal skin where it co-expressed with melanocyte markers, MITF and MLANA. Co-expression with its downstream target, antiapoptotic factor BCL2L1 confirms PAX3 as a cell survival regulator. PAX3 was also co-expressed with melanoma cell migration marker MCAM in dermal naevi and melanoma cell nests, but this downstream target of PAX3 was not present in normal epidermal melanocytes, suggesting differential roles for PAX3 in normal epidermal melanocytes and melanoma cells. Most interestingly, a proportion of PAX3-positive epidermal melanocytes in normal skin show HES1 and Ki67 co-expression, indicating their less differentiated proliferative phenotype. Conclusions and Significance Our results suggest that a previously identified role for PAX3, that of regulator of an undifferentiated plastic state, may operate in melanocytes of normal skin. This role, possibly required for cellular response to environmental stimuli, may contribute to formation and development of melanocytic lesions in which PAX3 expression is prominent
    corecore