75 research outputs found
Seasonal sea ice persisted through the Holocene Thermal Maximum at 80°N
AbstractThe cryospheric response to climatic warming responsible for recent Arctic sea ice decline can be elucidated using marine geological archives which offer an important long-term perspective. The Holocene Thermal Maximum, between 10 and 6 thousand years ago, provides an opportunity to investigate sea ice during a warmer-than-present interval. Here we use organic biomarkers and benthic foraminiferal stable isotope data from two sediment cores in the northernmost Barents Sea (>80 °N) to reconstruct seasonal sea ice between 11.7 and 9.1 thousand years ago. We identify the continued persistence of sea-ice biomarkers which suggest spring sea ice concentrations as high as 55%. During the same period, high foraminiferal oxygen stable isotopes and elevated phytoplankton biomarker concentrations indicate the influence of warm Atlantic-derived bottom water and peak biological productivity, respectively. We conclude that seasonal sea ice persisted in the northern Barents Sea during the Holocene Thermal Maximum, despite warmer-than-present conditions and Atlantic Water inflow.</jats:p
Combined immunodeficiency develops with age in immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2)
The autosomal recessive immunodeficiency-centromeric instability-facial anomalies syndrome (ICF) is characterized by immunodeficiency, developmental delay, and facial anomalies. ICF2, caused by biallelic ZBTB24 gene mutations, is acknowledged primarily as an isolated B-cell defect. Here, we extend the phenotype spectrum by describing, in particular, for the first time the development of a combined immune defect throughout the disease course as well as putative autoimmune phenomena such as granulomatous hepatitis and nephritis. We also demonstrate impaired cell-proliferation and increased cell death of immune and non-immune cells as well as data suggesting a chromosome separation defect in addition to the known chromosome condensation defect
Antibiotic treatment-induced secondary IgA deficiency enhances susceptibility to Pseudomonas aeruginosa pneumonia.
Broad-spectrum antibiotics are widely used with patients in intensive care units (ICUs), many of whom develop hospital-acquired infections with Pseudomonas aeruginosa. Although preceding antimicrobial therapy is known as a major risk factor for P. aeruginosa-induced pneumonia, the underlying mechanisms remain incompletely understood. Here we demonstrate that depletion of the resident microbiota by broad-spectrum antibiotic treatment inhibited TLR-dependent production of a proliferation-inducing ligand (APRIL), resulting in a secondary IgA deficiency in the lung in mice and human ICU patients. Microbiota-dependent local IgA contributed to early antibacterial defense against P. aeruginosa. Consequently, P. aeruginosa-binding IgA purified from lamina propria culture or IgA hybridomas enhanced resistance of antibiotic-treated mice to P. aeruginosa infection after transnasal substitute. Our study provides a mechanistic explanation for the well-documented risk of P. aeruginosa infection following antimicrobial therapy, and we propose local administration of IgA as a novel prophylactic strategy
Potential links between surging ice sheets, circulation changes and the Dansgaard Oeschger cycles in the Irminger Sea, 60-18 kyr.
Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997]. During interstadials, summer sea surface temperatures (SST<inf>su</inf>) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ∼36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SST<inf>su</inf> dropped to 2°-4°C, in phase with SSS drops by ∼1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic δ18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles
Dynamics of Spontaneous (Multi) Centennial‐Scale Variations of the Atlantic Meridional Overturning Circulation Strength During the Last Interglacial
International audienceRecent reconstructions of bottom water δ 13 C during the last interglacial (LIG) suggest short-lived variability in the Atlantic meridional overturning circulation (AMOC). Spontaneous (multi) centennial-scale variability of the AMOC simulated in the Earth system model of intermediate complexity iLOVECLIM are investigated for that period. The model simulates abrupt AMOC transitions occurring at 300 years frequency and correspond to a switch of the AMOC vigor between a strong (∼17 Sv) and a weak (∼11 Sv) state. The onset of these abrupt transitions is associated with changes in orbital forcings resulting in the decline of summer insolation in the high latitudes of the North Atlantic and affecting the sea ice cover in two key deep convection regions: (1) the northern Nordic Seas (NNS) and (2) the northwest North Atlantic (NWNA). Northward inflow of Atlantic surface water increases the convection depth in (1) and strengthens the Greenland Iceland Norway (GIN) Seas overturning circulation. Subsequent ocean-atmosphere interactions involving sea ice, ocean heat release, anomalies of evaporation-precipitation, and wind stress over the Nordic Seas lead also to an increase in deep convection in (2), followed by increase in the AMOC strength
The oxygen isotopic composition and temperature of southern ocean bottom waters during the Last Glacial Maximum
We provide two new determinations of the oxygen isotopic composition of seawater during the last glacial maximum (LGM). High-resolution oxygen isotopic measurements were made on interstitial waters from Ocean Drilling Program (ODP) Sites 1168 and 1170 in the southeast Indian Ocean sector of the Southern Ocean. We use a diffusion–advection numerical model to calculate the glacial–interglacial change in bottom-water δ18Osw from the pore water δ18O profiles; the first such determinations from this part of the oceans. Statistical analyses of the model runs indicate that Circumpolar Deep Water (CDW) δ18Osw changed by 1.0–1.1±0.15‰ since the last glacial maximum (LGM). Our results are consistent with a previous calculation from a South Atlantic Southern Ocean location (ODP Site 1093) also situated within CDW. The new values determined in this study, together with previous estimates, are converging on a global average Δδ18Osw of 1.0–1.1‰.
Using the calculated bottom-water δ18Osw, we have extracted the temperature component from the benthic foraminiferal δ18O record at Sites 1168 and 1170. Since the LGM, bottom waters at these two sites warmed by 2.6 and 1.9°C, respectively. The absolute temperature estimates for the LGM (−0.5°C [Θ=−0.6°C] at Site 1168 and −0.2°C [Θ=−0.4°C] at Site 1170) are slightly warmer than those reported from previous studies using the same technique, but are consistent with more homogenous deep-ocean temperatures during the LGM relative to the modern
Controls on delta<sup>18</sup>O and delta<sup>13</sup>C profiles within the aragonite bivalve <em>Arctica islandic</em> <em/>
The geochemistry of Arctica islandica shells provides an opportunity to reconstruct intra-annual resolution climate records in temperate latitudes, and the annual banding allows close temporal constraint. Stable isotope analyses of carbon and oxygen from an Arctica islandica live-collected at 6 m depth from Irvine Bay, UK are presented. Seawater temperature ranges reconstructed from shell delta O-18 agree, within error, with instrumental sea surface temperature measurements. The saw-tooth profile of the seasonal delta O-18 signal (compared with the sinusoidal seawater temperature) indicates that shell accretion rate is not constant throughout the year. yodelling the expected delta O-18 profile from water temperature, salinity and shell growth rate suggest that A. islandica at this site has significant variation in the shell extension rate during the year. Material deposited during shell damage shows a positive shift in delta O-18 m strong ontogenetic effect is seen in delta C-13 and damage to the shell is associated with a significant (>0.5 parts per thousand) and sustained shift of delta C-13.</p
- …