99 research outputs found

    Cognitive impairment in essential tremor assessed by the cerebellar cognitive affective syndrome scale

    Get PDF
    BackgroundEssential tremor (ET) is a movement disorder characterized by cerebellar neurodegenerative changes. ET is also associated with non-motor symptoms including cognitive impairment. The neuropsychologic profile of a patient with ET could relate to cerebellar cognitive affective syndrome (CCAS).ObjectiveThis study aimed to assess the prevalence of cognitive impairment in patients with ET and identify whether the cognitive impairment in ET corresponds to a CCAS.MethodsCognitive functions were evaluated with the CCAS-Scale (CCAS-S) in 20 patients with ET and 20 controls matched for age, sex, and level of education. The results of the CCAS-S were compared between patients and controls. The underlying determinant of CCAS inpatients with ET was identified through the correlation between the results of the CCAS-S and age at onset of symptoms, disease duration, and the Essential Tremor Rating Assessment Scale (TETRAS).ResultsOn a group level, ET patients performed significantly worse than matched controls. In total, 13 individuals with ET had a definite CCAS (CCAS-S failed items ≄ 3). ASO and TETRAS scores significantly correlated with CCAS-S performances in ET patients.ConclusionCCAS is highly prevalent in patients with ET which supports the cerebellar pathophysiology of associated cognitive impairment and supports a more systematic use of the CCAS-S to cognitively assessed patients with ET

    Proprioceptive and tactile processing in individuals with Friedreich ataxia: an fMRI study

    Get PDF
    ObjectiveFriedreich ataxia (FA) neuropathology affects dorsal root ganglia, posterior columns in the spinal cord, the spinocerebellar tracts, and cerebellar dentate nuclei. The impact of the somatosensory system on ataxic symptoms remains debated. This study aims to better evaluate the contribution of somatosensory processing to ataxia clinical severity by simultaneously investigating passive movement and tactile pneumatic stimulation in individuals with FA.MethodsTwenty patients with FA and 20 healthy participants were included. All subjects underwent two 6 min block-design functional magnetic resonance imaging (fMRI) paradigms consisting of twelve 30 s alternating blocks (10 brain volumes per block, 120 brain volumes per paradigm) of a tactile oddball paradigm and a passive movement paradigm. Spearman rank correlation tests were used for correlations between BOLD levels and ataxia severity.ResultsThe passive movement paradigm led to the lower activation of primary (cSI) and secondary somatosensory cortices (cSII) in FA compared with healthy subjects (respectively 1.1 ± 0.78 vs. 0.61 ± 1.02, p = 0.04, and 0.69 ± 0.5 vs. 0.3 ± 0.41, p = 0.005). In the tactile paradigm, there was no significant difference between cSI and cSII activation levels in healthy controls and FA (respectively 0.88 ± 0.73 vs. 1.14 ± 0.99, p = 0.33, and 0.54 ± 0.37 vs. 0.55 ± 0.54, p = 0.93). Correlation analysis showed a significant correlation between cSI activation levels in the tactile paradigm and the clinical severity (R = 0.481, p = 0.032).InterpretationOur study captured the difference between tactile and proprioceptive impairments in FA using somatosensory fMRI paradigms. The lack of correlation between the proprioceptive paradigm and ataxia clinical parameters supports a low contribution of afferent ataxia to FA clinical severity

    Altered neocortical tactile but preserved auditory early change detection responses in Friedreich ataxia

    Get PDF
    Available online 11 May 2019Objective: To study using magnetoencephalography (MEG) the spatio-temporal dynamics of neocortical responses involved in sensory processing and early change detection in Friedreich ataxia (FRDA). Methods: Tactile (TERs) and auditory (AERs) evoked responses, and early neocortical change detection responses indexed by the mismatch negativity (MMN) were recorded using tactile and auditory oddballs in sixteen FRDA patients and matched healthy subjects. Correlations between the maximal amplitude of each response, genotype and clinical parameters were investigated. Results: Evoked responses were detectable in all FRDA patients but one. In patients, TERs were delayed and reduced in amplitude, while AERs were only delayed. Only tactile MMN responses at the contralateral secondary somatosensory cortex were altered in FRDA patients. Maximal amplitudes of TERs, AERs and tactile MMN correlated with genotype, but did not correlate with clinical parameters. Conclusions: In FRDA, the amplitude of tactile MMN responses at SII cortex are reduced and correlate with the genotype, while auditory MMN responses are not altered. Significance: Somatosensory pathways and tactile early change detection are selectively impaired in FRDAThis study was financially supported by (i) the research grant ‘‘Les Voies du Savoir” from the Fonds Erasme (Brussels, Belgium) and (ii) the Fonds de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium; research credit: J.0095.16.F). Gilles Naeije was supported by a research grant from the Fonds Erasme (Brussels, Belgium). Mathieu Bourguignon was supported by the program Attract of Innoviris (grant 2015-BB2B-10), by the Spanish Ministry of Economy and Competitiveness (grant PSI2016-77175-P), and by the Marie SkƂodowska-Curie Action of the European Commission (grant 743562). Xavier De Tiùge is Postdoctorate Clinical Master Specialist at the Fonds de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium). The MEG project at the CUB Hîpital Erasme is financially supported by the Fonds Erasme (Research grant ‘‘Les Voies du Savoir”, Brussels, Belgium). The authors would like to thank Brice Marty for his help in MEG data acquisition

    Selective attention of students suffering from primary headaches in a pain free period: a case control study

    Get PDF
    Background: Headache patients frequently complain about difficulties in attention and concentration, even when they are headache-free and psychometric studies concerning attentional deficits in headache patients between attacks are scarce.Objective: To evaluate selective attention of headache patients in a pain free period and compare them with healthy volunteers.Subjects and Methods: We performed, between February 2011 and July 2011, a case-control study, including 45 university students consulting for primary headaches, matched with 45 healthy students as controls. Headaches were classified according to the International Headache Society criteria (IHS, 2004). Subjects with a history of brain injury, epilepsy and visual disturbancies were excluded. Mood disorders were assessed using the Hospital Anxiety Depression (HAD) questionnaire. Selective attention was evaluated using the D-KEFS color-word interference test.Results: Mean age of patients was 23.29 ± 2.55 years, versus 22.89 ± 2.04 years for controls (p = 0.2). Migraine and tension-type headaches were the only diagnosed headache types, respectively 55.56% and 44.44%. The selective attention score was -4.04 ± 7.08 for patients, versus -1.31 ± 7.73 for controls (p = 0.02). The mean mental flexibility score was lower in headache sufferers compared to controls (36.67 ± 6.79 versus 41.33 ± 6.23, p = 0.001). Gender, anxiety and depression scores, and temporal features of headache had no correlation with selective attention score.Conclusion: Selective attention and mental flexibility capacities seem to be reduced in primary headache sufferers in pain free period. These findings could contribute to our understanding of the pathophysiology of primary headaches.Keywords: Selective attention, mental flexibility, neuropsychology, headache, migrain

    Inaccurate cortical tracking of speech in adults with impaired speech perception in noise

    Get PDF
    Published:10 September 2021Impaired speech perception in noise despite normal peripheral auditory function is a common problem in young adults. Despite a growing body of research, the pathophysiology of this impairment remains unknown. This magnetoencephalography study characterizes the cortical tracking of speech in a multi-talker background in a group of highly selected adult subjects with impaired speech perception in noise without peripheral auditory dysfunction. Magnetoencephalographic signals were recorded from 13 subjects with impaired speech perception in noise (six females, mean age: 30 years) and matched healthy subjects while they were listening to 5 different recordings of stories merged with a multi-talker background at different signal to noise ratios (No Noise, ĂŸ10, ĂŸ5, 0 and 5dB). The cortical tracking of speech was quantified with coherence between magnetoencephalographic signals and the temporal envelope of (i) the global auditory scene (i.e. the attended speech stream and the multi-talker background noise), (ii) the attended speech stream only and (iii) the multi-talker background noise. Functional connectivity was then estimated between brain areas showing altered cortical tracking of speech in noise in subjects with impaired speech perception in noise and the rest of the brain. All participants demonstrated a selective cortical representation of the attended speech stream in noisy conditions, but subjects with impaired speech perception in noise displayed reduced cortical tracking of speech at the syllable rate (i.e. 4–8Hz) in all noisy conditions. Increased functional connectivity was observed in subjects with impaired speech perception in noise in Noiseless and speech in noise conditions between supratemporal auditory cortices and left-dominant brain areas involved in semantic and attention processes. The difficulty to understand speech in a multi-talker background in subjects with impaired speech perception in noise appears to be related to an inaccurate auditory cortex tracking of speech at the syllable rate. The increased functional connectivity between supratemporal auditory cortices and language/attention-related neocortical areas probably aims at supporting speech perception and subsequent recognition in adverse auditory scenes. Overall, this study argues for a central origin of impaired speech perception in noise in the absence of any peripheral auditory dysfunction.Marc Vander Ghinst, Gilles Naeije and Maxime Niesen were supported by a research grant from the Fonds Erasme (Brussels, Belgium). Mathieu Bourguignon was supported by the Program Attract of Innoviris (grant 2015-BB2B-10), Spanish Ministry of Economy and Competitiveness (grant PSI2016-77175-P) and Marie SkƂodowska-Curie Action of the European Commission (grant 743562). Gilles Naeije and Xavier De Tie`ge are Post-doctorate Clinical Master Specialist at the Fonds de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium). This study and the MEG project at the CUB Hoˆpital Erasme were financially supported by the Fonds Erasme (Research Convention ‘Les Voies du Savoir’, Fonds Erasme, Brussels, Belgium)

    Synchrony, metastability, dynamic integration, and competition in the spontaneous functional connectivity of the human brain

    Get PDF
    Available online 3 June 2019.The human brain is functionally organized into large-scale neural networks that are dynamically interconnected. Multiple short-lived states of resting-state functional connectivity (rsFC) identified transiently synchronized networks and cross-network integration. However, little is known about the way brain couplings covary as rsFC states wax and wane. In this magnetoencephalography study, we explore the synchronization structure among the spontaneous interactions of well-known resting-state networks (RSNs). To do so, we extracted modes of dynamic coupling that reflect rsFC synchrony and analyzed their spatio-temporal features. These modes identified transient, sporadic rsFC changes characterized by the widespread integration of RSNs across the brain, most prominently in the ÎČ band. This is in line with the metastable rsFC state model of resting-state dynamics, wherein our modes fit as state transition processes. Furthermore, the default-mode network (DMN) stood out as being structured into competitive cross-network couplings with widespread DMN-RSN interactions, especially among the ÎČ-band modes. These results substantiate the theory that the DMN is a core network enabling dynamic global brain integration in the ÎČ band.This work was supported by the Action de Recherche Concert ee (ARC Consolidation 2015–2019, “Characterization of the electrophysiological bases, the temporal dynamics and the functional relevance of resting state network” attributed to X.D.T.) and by the research convention “Les Voies du Savoir” (Fonds Erasme, Brussels, Belgium). M.B. benefited from the program Attract of Innoviris (grant 2015-BB2B-10), the Spanish Ministry of Economy and Competitiveness (grant PSI2016-77175-P), and theMarie SkƂodowska-Curie Action of the European Commission (grant 743562). M.V.G. and G.N.were supported by the Fonds Erasme. N.C. benefited from a research grant from the ARC Consolidation (2014–2017, “Characterization of the electrophysiological bases, the temporal dynamics and the functional relevance of resting state network” attributed to X.D.T.) and from the Fonds Erasme (research convention “Les Voies du Savoir”). X.D.T. is Post-doctorate Clinical Master Specialist at the Fonds de la Recherche Scientifique (F.R.S.-FNRS, Brussels, Belgium). The MEG project at the CUB – H^opital Erasme is financially supported by the Fonds Erasme (research convention “Les Voies du Savoir”)

    Role of Epileptic Activity in Older Adults With Delirium, a Prospective Continuous EEG Study

    Get PDF
    Background/Objectives: Delirium occurs in up to 50 % of hospitalized old patients and is associated with increased morbidity and mortality. Acute medical conditions favor delirium, but the pathophysiology is unclear. Preliminary evidence from retrospective and prospective studies suggests that a substantial minority of old patients with unexplained delirium have non-convulsive seizures or status epilepticus (NCSE). Yet, seeking epileptic activity only in unexplained cases of delirium might result in misinterpretation of its actual prevalence. We aimed to systematically investigate the role of epileptic activity in all older patients with delirium regardless of the underlying etiology.Design, Setting: Prospective observational study in a tertiary medical center. Adults >65 years with delirium underwent at least 24 h of continuous electro-encephalographic monitoring (cEEG). Background patterns and ictal and interictal epileptic discharges were identified, as well as clinical and biological characteristics.Participants: Fifty patients were included in the study.Results: NCSE was found in 6 (12%) patients and interictal discharges in 15 (30%). There was no difference in the prevalence of epileptic activity rates between delirium associated with an acute medical condition and delirium of unknown etiology.Conclusion: Epileptic activity may play a substantial role in the pathophysiology of delirium by altering brain functioning and neuronal metabolism. No clinical or biological marker was found to distinguish delirious patients with or without epileptic activity, underlining the importance of cEEG in this context

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Insights into the neural bases of tactile change detection from magnetoencephalography

    No full text
    The objectives of my PhD were to identify the spatial and the temporal dynamics of the brain areas involved in tactile change detection as well as the neural mechanisms responsible for the processing of tactile change detection. To that aim, three specific MEG studies were performed; each of them is addressing specific research aims.The first study investigated the spatiotemporal dynamics of the multilevel cortical processing of tactile change detection in human healthy subjects. This study disclosed a hierarchical organization from unimodal early tactile change detection at secondary somatosensory cortex to multi modal complex processing at bilateral temporo-parietal junctions, posterior parietal cortex and supplementary motor areas. The second study aimed at discriminating between debated neural mechanisms responsible for the genesis of the somatosensory mismatch negativity (sMMN). To do so, we manipulated the predictability of the deviant stimuli and the response to omissions in different kind of oddballs, the response to deviant stimuli paired with standards and occurring alone. We found out that mechanisms for early tactile change detection reflected by the sMMN were better explained by the predictive coding theory compared to the adaptation and adjustment theories. Finally we sought to characterize the alterations in early cortical tactile change detection in Friedreich Ataxia (FRDA); a neurological disorder characterized by somatosensory and cerebellar pathways degeneration. The aim of this work was to study the role of the cerebellum in the genesis of sMMN and its potential selectivity for somatosensory change detection compared to auditory. This study demonstrated that, in FRDA, both tactile and auditory pathways are affected at the level of primary sensory neurons and dorsal root/spiral ganglia in a genetically determined. By contrasts, early cortical sensory change detection in FRDA was impaired only in the tactile modality in line with the sMMN impairment described in patients with acquired cerebellar lesions or during cerebellar inhibition by trans cranial magnetic stimulation. These data brought novel empirical evidence supporting the contribution of spinocerebellar tracts in sMMN genesis at cSII cortex.In conclusion, this PhD contributed to identify the network responsible for tactile change detection that involves cuneocerebellar spinocerebellar tract and cSII cortex as somatosensory specific areas and TPJ, SMA & PPC as multimodal brain areas. We further provided evidence that early change detection mechanisms at SII cortex fall under the predictive coding framework and that change detection is hierarchically organized with inputs from low level areas for genesis of an adequate generative model of our environment and conscious representation of our body.Doctorat en Sciences médicales (Médecine)info:eu-repo/semantics/nonPublishe
    • 

    corecore