28 research outputs found

    Small Deletion at the 7q21.2 Locus in a CCM Family Detected by Real-Time Quantitative PCR

    Get PDF
    Cerebral cavernous malformations (CCMs) represent a common autosomal dominant disorder that predisposes patients to haemorrhagic strokes and focal neurological signs. About 56% of the hereditary forms of CCMs have been so far associated with mutations in the KRIT1 (Krev Interaction Trapped 1) gene, located at 7q21.2 (CCM1 locus). We described the complete loss of 7q21.2 locus encompassing the KRIT1 gene and 4 flanking genes in a CCM family by using a dense set of 12 microsatellite markers. The complete loss of the maternal copy of KRIT1 gene region was confirmed by Real-Time Quantitative Polymerase Chain Reaction (RT-QPCR) and the same approach was used for expression analysis. Additional RT-QPCR analysis showed the extension of the deletion, for a total of 700 kb, to the adjacent downstream and upstream-located genes, MTERF, AKAP9, CYP51A1, as well as a partial loss of the ANKIB1 gene. Here we report the molecular characterization of an interstitial small genomic deletion of the 7q21.2 region in a CCMs affected family, encompassing the KRIT1 gene. Our findings confirm the loss of function mechanism for the already known CCM1 locus, without any evident involvement of the other deleted genes. Moreover, our investigations highlight the usefulness of the RT-QPCR to the molecular characterization of the breakpoints genomic deletions and to the identification of internal deleted genes involved in the human genetic diseases

    Candidate gene study of HOXB1 in autism spectrum disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>HOXB1 </it>plays a major role in brainstem morphogenesis and could partly determine the cranial circumference in conjunction with <it>HOXA1</it>. In our sample, <it>HOXA1 </it>alleles significantly influence head growth rates both in autistic patients and in population controls. An initial report, suggesting that <it>HOXB1 </it>could confer autism vulnerability in interaction with <it>HOXA1</it>, was not confirmed by five small association studies.</p> <p>Methods</p> <p>Our sample includes 269 autistic individuals, belonging to 219 simplex and 28 multiplex families. A mutational analysis of the two exons and flanking intronic sequences of the <it>HOXB1 </it>gene was carried out in 84 autistic patients by denaturing high performance liquid chromatography, followed by DNA sequencing. Identified rare variants were then searched by a restriction analysis in 236 autistic patients and 325-345 controls. Case-control and family-based association studies were performed on two common variants in 169 Italian patients versus 184 Italian controls and in 247 trios.</p> <p>Results</p> <p>We identified three common polymorphisms, rs72338773 [c.82insACAGCGCCC (INS/nINS)], rs12939811 [c.309A>T (Q103H)], and rs7207109 [c.450G>A (A150A)] and three rare variants, namely IVS1+63G>A, rs35115415 [c.702G>A (V234V)] and c.872_873delinsAA (S291N). SNPs rs72338773 and rs12939811 were not associated with autism, using either a case-control (alleles, exact <it>P </it>= 0.13) or a family-based design [transmission/disequilibrium test (TDT)χ<sup>2 </sup>= 1.774, <it>P </it>= 0.183]. The rare variants, all inherited from one of the parents, were present in two Italian and in two Caucasian-American families. Autistic probands in two families surprisingly inherited a distinct rare variant from each parent. The IVS1+63A allele was present in 3/690 control chromosomes, whereas rare alleles at rs35115415 and c.872_873delinsAA (S291N) were not found in 662 and 650 control chromosomes, respectively. The INS-T309 allele influenced head size, but its effect appears more modest and shows no interaction with <it>HOXA1 </it>alleles. The INS-T309 allele is also associated with more severe stereotypic behaviours, according to ADI-R scores (<it>N </it>= 60 patients, <it>P </it>< 0.01).</p> <p>Conclusions</p> <p><it>HOXB1 </it>mutations do not represent a common cause of autism, nor do <it>HOXB1 </it>common variants play important roles in autism vulnerability. <it>HOXB1 </it>provides minor, albeit detectable contributions to head circumference in autistic patients, with <it>HOXA1 </it>displaying more prominent effects. <it>HOXB1 </it>variants may modulate the clinical phenotype, especially in the area of stereotypic behaviours.</p

    A prognostic DNA methylation signature for stage I non-small-cell lung cancer

    Get PDF
    Purpose Non-small-cell lung cancer (NSCLC) is a tumor in which only small improvements in clinical outcome have been achieved. The issue is critical for stage I patients for whom there are no available biomarkers that indicate which high-risk patients should receive adjuvant chemotherapy. We aimed to find DNA methylation markers that could be helpful in this regard. Patients and Methods A DNA methylation microarray that analyzes 450,000 CpG sites was used to study tumoral DNA obtained from 444 patients with NSCLC that included 237 stage I tumors. The prognostic DNA methylation markers were validated by a single-methylation pyrosequencing assay in an independent cohort of 143 patients with stage I NSCLC. Results Unsupervised clustering of the 10,000 most variable DNA methylation sites in the discovery cohort identified patients with high-risk stage I NSCLC who had shorter relapse-free survival (RFS; hazard ratio [HR], 2.35; 95% CI, 1.29 to 4.28; P = .004). The study in the validation cohort of the significant methylated sites from the discovery cohort found that hypermethylation of five genes was significantly associated with shorter RFS in stage I NSCLC: HIST1H4F, PCDHGB6, NPBWR1, ALX1, and HOXA9. A signature based on the number of hypermethylated events distinguished patients with high-and low-risk stage I NSCLC (HR, 3.24; 95% CI, 1.61 to 6.54; P = .001). Conclusion The DNA methylation signature of NSCLC affects the outcome of stage I patients, and it can be practically determined by user-friendly polymerase chain reaction assays. The analysis of the best DNA methylation biomarkers improved prognostic accuracy beyond standard staging. (C) 2013 by American Society of Clinical Oncology

    Comprehensive genomic profiles of small cell lung cancer

    Get PDF
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Human bronchial carcinoid tumor initiating cells are targeted by the combination of acetazolamide and sulforaphane

    No full text
    Abstract Background Bronchial carcinoids are neuroendocrine tumors that present as typical (TC) and atypical (AC) variants, the latter being more aggressive, invasive and metastatic. Studies of tumor initiating cell (TIC) biology in bronchial carcinoids has been hindered by the lack of appropriate in-vitro and xenograft models representing the bronchial carcinoid phenotype and behavior. Methods Bronchial carcinoid cell lines (H727, TC and H720, AC) were cultured in serum-free growth factor supplemented medium to form 3D spheroids and serially passaged up to the 3rd generation permitting expansion of the TIC population as verified by expression of stemness markers, clonogenicity in-vitro and tumorigenicity in both subcutaneous and orthotopic (lung) models. Acetazolamide (AZ), sulforaphane (SFN) and the AZ + SFN combination were evaluated for targeting TIC in bronchial carcinoids. Results Data demonstrate that bronchial carcinoid cell line 3rd generation spheroid cells show increased drug resistance, clonogenicity, and tumorigenic potential compared with the parental cells, suggesting selection and expansion of a TIC fraction. Gene expression and immunolabeling studies demonstrated that the TIC expressed stemness factors Oct-4, Sox-2 and Nanog. In a lung orthotopic model bronchial carcinoid, cell line derived spheroids, and patient tumor derived 3rd generation spheroids when supported by a stroma, showed robust tumor formation. SFN and especially the AZ + SFN combination were effective in inhibiting tumor cell growth, spheroid formation and in reducing tumor formation in immunocompromised mice. Conclusions Human bronchial carcinoid tumor cells serially passaged as spheroids contain a higher fraction of TIC exhibiting a stemness phenotype. This TIC population can be effectively targeted by the combination of AZ + SFN. Our work portends clinical relevance and supports the therapeutic use of the novel AZ+ SFN combination that may target the TIC population of bronchial carcinoids

    Small Deletion at the 7q21.2 Locus in a CCM Family Detected by Real-Time Quantitative PCR

    No full text
    Cerebral cavernous malformations (CCMs) represent a common autosomal dominant disorder that predisposes patients to haemorrhagic strokes and focal neurological signs. About 56% of the hereditary forms of CCMs have been so far associated with mutations in the KRIT1 (Krev Interaction Trapped 1) gene, located at 7q21.2 (CCM1 locus). We described the complete loss of 7q21.2 locus encompassing the KRIT1 gene and 4 flanking genes in a CCM family by using a dense set of 12 microsatellite markers. The complete loss of the maternal copy of KRIT1 gene region was confirmed by Real-Time Quantitative Polymerase Chain Reaction (RT-QPCR) and the same approach was used for expression analysis. Additional RT-QPCR analysis showed the extension of the deletion, for a total of 700 kb, to the adjacent downstream and upstream-located genes, MTERF, AKAP9, CYP51A1, as well as a partial loss of the ANKIB1 gene. Here we report the molecular characterization of an interstitial small genomic deletion of the 7q21.2 region in a CCMs affected family, encompassing the KRIT1 gene. Our findings confirm the loss of function mechanism for the already known CCM1 locus, without any evident involvement of the other deleted genes. Moreover, our investigations highlight the usefulness of the RT-QPCR to the molecular characterization of the breakpoints genomic deletions and to the identification of internal deleted genes involved in the human genetic diseases

    Extraneuraxial hemangioblastoma: A clinicopathologic study of 10 cases with molecular analysis of the VHL gene

    No full text
    Less than 250 extraneuraxial hemangioblastomas occurring in paraneuraxial or peripheral sites have been reported to date, sporadically or in the setting of von Hippel-Lindau disease. Seventeen such cases underwent molecular genetic analysis, using either the patient's peripheral blood in 9 cases or paraffin embedded tumor tissue in the rest. VHL gene mutations were documented in 3/9 cases in which DNA from peripheral blood lymphocytes was used, all with clinically manifest von Hippel-Lindau disease; instead, no VHL gene alterations were found in all of the 8 cases with sporadic extraneuraxial hemangioblastoma in which DNA from tumor tissue was analyzed. Our aim is to investigate the molecular genetic profile of the VHL gene in extraneuraxial hemangioblastoma using paraffin embedded tumor tissues. The clinical features, histopathology, and molecular investigations of 10 extraneuraxial hemangioblastomas (7 females, 3 males; median age: 47 years) are presented herein. The histopathologic diagnosis was supported by immunohistochemistry (10/10) and electron microscopy (4/10). Molecular genetic analysis was conducted (10/10) for VHL gene mutations, LOH, and gene promoter methylation. Two of the present cases were already published with only limited or no molecular investigations. Four tumors of the present series were paraneuraxial, and 6 peripheral (2 involved soft tissues, and 4 the kidney). One tumor was von Hippel-Lindau disease-associated, 1 was classified as “hemangioblastoma-only VHLD” 7 were sporadic, and one was unknown. All were histopathologically analogous to their counterpart located inside the central nervous system. Immunophenotypically, all tumors expressed vimentin, S-100, NSE, and alpha-inhibin (10/10). Ultrastructurally, unbound lipid droplets filled the cytoplasms of the stromal cells. Molecular analysis revealed 3 inactivating mutations (1 germline, two somatic) in the coding sequence of the VHL gene in 2 different extraneuraxial hemangioblastomas, and LOH in 4 (two as a double hit), all non-renal extraneuraxial hemangioblastomas. Methylation analysis failed to disclose promoter methylation in any case. In conclusion, we report eight new cases from the wide category of extraneuraxial hemangioblastomas (4 paraneuraxial, and 4 renal), one of which was von Hippel-Lindau disease-associated and 7 sporadic. VHL gene alterations were found not only in the von Hippel-Lindau disease-associated tumor, but − for the first time − also in 3 sporadic ones, two of which with novel mutations
    corecore