20 research outputs found

    Development of the routine laboratory diagnosis of activated protein c resistance and its evaluation in a population of pregnant women

    Get PDF
    A Research Report submitted to the Faculty of Medicine, University of the Witwatersrand, in part fulfilment of the requirements for the degree of Master of Medicine in the branch of Haematology Johannesburg, October 1997Venous thromboembolic disease is a common health problem. It contributes considerably to morbidity as well as to mortality. Thrombosis usually occurs due to an underlying risk factor which may be environmental or genetic in origin. The recently described activated Protein C (APC) resistance is the commonest cause of familial thrombophilia documented to date. The molecular lesion is a single point mutation in the factor V (FV) gene which abolishes a cleavage site whereby it is normally inactivated by APC. This defect, termed the FV Leiden mutation, is highly prevalent in normal Caucasian populations. Although it would appear to have arisen due to a founder effect, there is a paucity of data concerning non-Caucasian populations.IT201

    Transmission of Novel Influenza A(H1N1) in Households with Post-Exposure Antiviral Prophylaxis

    Get PDF
    BACKGROUND: Despite impressive advances in our understanding of the biology of novel influenza A(H1N1) virus, little is as yet known about its transmission efficiency in close contact places such as households, schools, and workplaces. These are widely believed to be key in supporting propagating spread, and it is therefore of importance to assess the transmission levels of the virus in such settings. METHODOLOGY/PRINCIPAL FINDINGS: We estimate the transmissibility of novel influenza A(H1N1) in 47 households in the Netherlands using stochastic epidemic models. All households contained a laboratory confirmed index case, and antiviral drugs (oseltamivir) were given to both the index case and other households members within 24 hours after detection of the index case. Among the 109 household contacts there were 9 secondary infections in 7 households. The overall estimated secondary attack rate is low (0.075, 95%CI: 0.037-0.13). There is statistical evidence indicating that older persons are less susceptible to infection than younger persons (relative susceptibility of older persons: 0.11, 95%CI: 0.024-0.43. Notably, the secondary attack rate from an older to a younger person is 0.35 (95%CI: 0.14-0.61) when using an age classification of <or=12 versus >12 years, and 0.28 (95%CI: 0.12-0.50) when using an age classification of <or=18 versus >18 years. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the overall household transmission levels of novel influenza A(H1N1) in antiviral-treated households were low in the early stage of the epidemic. The relatively high rate of adult-to-child transmission indicates that control measures focused on this transmission route will be most effective in minimizing the total number of infections

    Ebola Virus Inactivation by Detergents Is Annulled in Serum

    No full text
    Treatment of blood samples from hemorrhagic fever virus (HFV)-infected patients with 0.1% detergents has been recommended for virus inactivation and subsequent safe laboratory testing. However, data on virus inactivation by this procedure are lacking. Here we show the effect of this procedure on diagnostic test results and infectious Ebola virus (EBOV) titers. Serum and whole-blood samples were treated with 0.1% or 1% sodium dodecyl sulfate (SDS) or 0.1% Triton X-100 and assayed for clinical chemistry and malaria antigen detection. Infectious EBOV titers were determined in SDS-treated plasma and whole blood from EBOV-infected nonhuman primates (NHPs). Infectious titers of EBOV or herpes simplex virus type 1 (HSV-1) in detergents-treated cell culture medium containing various serum concentrations were determined. Laboratory test results were not affected by 0.1% detergent treatment of blood samples, in contrast with 1% SDS treatment. However, 0.1% detergent treatment did not inactivate EBOV in blood samples from infected NHPs. Experiments with cell culture medium showed that virus inactivation by detergents is annulled at physiological serum concentrations. Treatment of blood samples with 0.1% SDS or Triton X-100 does not inactivate EBOV. Inactivation protocols for HFV should be validated with serum and whole bloo

    Introduction of Virulence Markers in PB2 of Pandemic Swine-Origin Influenza Virus Does Not Result in Enhanced Virulence or Transmissionâ–¿

    No full text
    In the first 6 months of the H1N1 swine-origin influenza virus (S-OIV) pandemic, the vast majority of infections were relatively mild. It has been postulated that mutations in the viral genome could result in more virulent viruses, leading to a more severe pandemic. Mutations E627K and D701N in the PB2 protein have previously been identified as determinants of avian and pandemic influenza virus virulence in mammals. These mutations were absent in S-OIVs detected early in the 2009 pandemic. Here, using reverse genetics, mutations E627K, D701N, and E677G were introduced into the prototype S-OIV A/Netherlands/602/2009, and their effects on virus replication, virulence, and transmission were investigated. Mutations E627K and D701N caused increased reporter gene expression driven by the S-OIV polymerase complex. None of the three mutations affected virus replication in vitro. The mutations had no major impact on virus replication in the respiratory tracts of mice and ferrets or on pathogenesis. All three mutant viruses were transmitted via aerosols or respiratory droplets in ferrets. Thus, the impact of key known virulence markers in PB2 in the context of current S-OIVs was surprisingly small. This study does not exclude the possibility of emergence of S-OIVs with other virulence-associated mutations in the future. We conclude that surveillance studies aimed at detecting S-OIVs with increased virulence or transmission should not rely solely on virulence markers identified in the past but should include detailed characterization of virus phenotypes, guided by genetic signatures of viruses detected in severe cases of disease in humans

    Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets

    No full text
    The swine-origin A(H1N1) influenza virus that has emerged in humans in early 2009 has raised concerns about pandemic developments. In a ferret pathogenesis and transmission model, the 2009 A(H1N1) influenza virus was found to be more pathogenic than a seasonal A(H1N1) virus, with more extensive virus replication occurring in the respiratory tract. Replication of seasonal A(H1N1) virus was confined to the nasal cavity of ferrets, but the 2009 A(H1N1) influenza virus also replicated in the trachea, bronchi, and bronchioles. Virus shedding was more abundant from the upper respiratory tract for 2009 A(H1N1) influenza virus as compared with seasonal virus, and transmission via aerosol or respiratory droplets was equally efficient. These data suggest that the 2009 A(H1N1) influenza virus has the ability to persist in the human population, potentially with more severe clinical consequences

    Synergistic Adaptive Mutations in the Hemagglutinin and Polymerase Acidic Protein Lead to Increased Virulence of Pandemic 2009 H1N1 Influenza A Virus in Mice

    No full text
    Influenza impressively reflects the paradigm of a viral disease in which continued evolution of the virus is of paramount importance for annual epidemics and occasional pandemics in humans. Because of the continuous threat of novel influenza outbreaks, it is essential to gather further knowledge about viral pathogenicity determinants. Here, we explored the adaptive potential of the influenza A virus subtype H1N1 variant isolate A/Hamburg/04/09 (HH/04) by sequential passaging in mice lungs. Three passages in mice lungs were sufficient to dramatically enhance pathogenicity of HH/04. Sequence analysis identified 4 nonsynonymous mutations in the third passage virus. Using reverse genetics, 3 synergistically acting mutations were defined as pathogenicity determinants, comprising 2 mutations in the hemagglutinin (HA[D222G] and HA[K163E]), whereby the HA(D222G) mutation was shown to determine receptor binding specificity and the polymerase acidic (PA) protein F35L mutation increasing polymerase activity. In conclusion, synergistic action of all 3 mutations results in a mice lethal pandemic H1N1 virus

    Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics

    No full text
    The objective of this Personal View is to compare transmissibility, hospitalisation, and mortality rates for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with those of other epidemic coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and pandemic influenza viruses. The basic reproductive rate (R0) for SARS-CoV-2 is estimated to be 2·5 (range 1·8–3·6) compared with 2·0–3·0 for SARS-CoV and the 1918 influenza pandemic, 0·9 for MERS-CoV, and 1·5 for the 2009 influenza pandemic. SARS-CoV-2 causes mild or asymptomatic disease in most cases; however, severe to critical illness occurs in a small proportion of infected individuals, with the highest rate seen in people older than 70 years. The measured case fatality rate varies between countries, probably because of differences in testing strategies. Population-based mortality estimates vary widely across Europe, ranging from zero to high. Numbers from the first affected region in Italy, Lombardy, show an all age mortality rate of 154 per 100 000 population. Differences are most likely due to varying demographic structures, among other factors. However, this new virus has a focal dissemination; therefore, some areas have a higher disease burden and are affected more than others for reasons that are still not understood. Nevertheless, early introduction of strict physical distancing and hygiene measures have proven effective in sharply reducing R0 and associated mortality and could in part explain the geographical differences
    corecore