35 research outputs found

    Snow Water Equivalent Retrieval Over Idaho – Part 2: Using L-Band UAVSAR Repeat-Pass Interferometry

    Get PDF
    This study evaluates using interferometry on low-frequency synthetic aperture radar (SAR) images to monitor snow water equivalent (SWE) over seasonal and synoptic scales. We retrieved SWE changes from nine pairs of SAR images, mean 8 d temporal baseline, captured by an L-band aerial platform, NASA\u27s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), over central Idaho as part of the NASA SnowEx 2020 and 2021 campaigns. The retrieved SWE changes were compared against coincident in situ measurements (SNOTEL and snow pits from the SnowEx field campaign) and to 100 m gridded SnowModel modeled SWE changes. The comparison of in situ to retrieved measurements shows a strong Pearson correlation (R = 0.80) and low RMSE (0.1 m, n = 64) for snow depth change and similar results for SWE change (RMSE = 0.04 m, R = 0.52, n = 57). The comparison between retrieved SWE changes to SnowModel SWE change also showed good correlation (R = 0.60, RMSD = 0.023 m, n = 3.2 × 106) and especially high correlation for a subset of pixels with no modeled melt and low tree coverage (R = 0.72, RMSD = 0.013 m, n = 6.5 × 104). Finally, we bin the retrievals for a variety of factors and show decreasing correlation between the modeled and retrieved values for lower elevations, higher incidence angles, higher tree percentages and heights, and greater cumulative melt. This study builds on previous interferometry work by using a full winter season time series of L-band SAR images over a large spatial extent to evaluate the accuracy of SWE change retrievals against both in situ and modeled results and the controlling factors of the retrieval accuracy

    Frequent, Geographically Structured Heteroplasmy in the Mitochondria of a Flowering Plant, Ribwort Plantain (Plantago lanceolata)

    Get PDF
    Recent research has convincingly documented cases of mitochondrial heteroplasmy in a small set of wild and cultivated plant species. Heteroplasmy is suspected to be common in flowering plants and investigations of additional taxa may help understand the mechanisms generating heteroplasmy as well as its effects on plant phenotypes. The role of mitochondrial heteroplasmy is of particular interest in plants as cytoplasmic male sterility is controlled by mitochondrial genotypes, sometimes leading to co-occurring female and hermaphroditic individuals (gynodioecy). Paternal leakage may be important in the evolution of mating systems in such populations. We conducted a genetic survey of the gynodioecious plant Plantago lanceolata, in which heteroplasmy has not previously been reported, and estimated the frequencies of mitochondrial genotypes and heteroplasmy. Sanger sequence genotyping of 179 individuals from 15 European populations for two polymorphic mitochondrial loci, atp6 and rps12, identified 15 heteroplasmic individuals. These were distributed among 6 of the 10 populations that had polymorphisms in the target loci and represented 8% of all sampled individuals and 15% of the individuals in those 6 populations. The incidence was highest in Northern England and Scotland. Our results are consistent with geographic differences in the incidence of paternal leakage and/or the rates of nuclear restoration of male fertility

    Contribution of machining to the fatigue behaviour of metal matrix composites (MMCs) of varying reinforcement size

    Get PDF
    The high cycle constant stress amplitude fatigue performance of metal matrix composite (MMC) components machined by a milling process was investigated in this study as a function of machining speed, feed rate and reinforcement particle size. The presence of reinforcement and particle size were found to be the most influential factors that affected the fatigue life. In contrast to this, the effect of feed and speed on tool-particle interaction, strain hardening and heat generation during milling of MMCs were balanced in such a way that the contributions of feed and speed on fatigue life were negligible. The interactions of different parameters contributed significantly to the fatigue life which indicated that the modelling of fatigue life based on these three parameters was relatively complex. The fatigue life of the machined MMC samples increased with decreasing particle size and increasing feed. However, the fatigue life was not influenced by speed variation. The presence of smaller or no particles induced a complete separation of failed samples, in contrast to that of specimens containing larger reinforcing particles where crack growth was arrested or deflected by the reinforcing particles

    Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well

    Get PDF
    A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s). We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (N = 251 samples). The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA) and three non-coding (trnH-psbA, atpF–atpH, and psbK–psbI) loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA) to 59% (trnH-psbA) of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85–100% for plastid loci), with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs). Several loci (matK, psbK–psbI, trnH-psbA) were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69–71%; values that were approached by several two- and three-region combinations). This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the contentious debate on plant barcoding should therefore involve increased attention to practical issues related to the ease of sequence recovery, global alignability, and marker redundancy in multilocus plant DNA barcoding systems

    The Mitochondrial Genome of the Lycophyte Huperzia squarrosa: The Most Archaic Form in Vascular Plants

    Get PDF
    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin
    corecore