24 research outputs found

    Poly(ethylene oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries with a Prussian Blue Positive Electrode

    Get PDF
    Potassium-ion batteries are an emerging post-lithium technology that are considered ecologically and economically benign in terms of raw materials’ abundance and cost. Conventional cell configurations employ flammable liquid electrolytes that impose safety concerns, as well as considerable degrees of irreversible side reactions at the reactive electrode interfaces (especially against potassium metal), resulting in a rapid capacity fade. While being inherently safer, solid polymer electrolytes may present a solution to capacity losses owing to their broad electrochemical stability window. Herein, we present for the first time a stable solid-state potassium battery composed of a potassium metal negative electrode, a Prussian blue analogue K₂Fe[Fe(CN)₆] positive electrode, and a poly(ethylene oxide)-potassium bis(trifluoromethanesulfonyl)imide polymer electrolyte. At an elevated operating temperature of 55 °C, the solid-state battery achieved a superior capacity retention of 90% over 50 cycles in direct comparison to a conventional carbonate-based liquid electrolyte operated at ambient temperature with a capacity retention of only 66% over the same cycle number interval

    Supporting Information: Unexpected chain of redox events in co-based Prussian blue analogues

    Get PDF
    Comprehensive characterizing information about the series of materials; crystal, composition, and hyperfine parameters of the 57Fe Mössbauer spectra of samples K2−ήMn1–xCox[Fe(CN)6]; SAED and TGA patterns, HAADF-STEM images, ATR–FTIR, 57Fe Mössbauer spectra, and electrochemical galvanostatic profiles of the mentioned series of samples; calculated fit of XAS experiments; and plots of KCMF50 and KCF operando SXRD in a 10–54° 2Θ range (λ = 1.0332 Å).Peer reviewe

    Global and Zonal-Mean Hydrological Response to Early Eocene Warmth

    Get PDF
    Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet-gets-wetter, dry-gets-drier” response anticipated over the ocean. Subtropical regions (∌15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data-modeling approach to reconstruct global and zonal-mean rainfall patterns during the early Eocene (∌56–48 million years ago). The Deep-Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid- (30°–60°N/S) and high-latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter-Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation-evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter-model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy-derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation-induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns

    A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences

    Get PDF
    The Last Interglacial period (LIG) is a period with increased summer insolation at high northern latitudes, which results in strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling and comparing the models' representation of climate reconstructions is one of the objectives set up by the Paleoclimate Modelling Intercomparison Project for its contribution to the sixth phase of the Coupled Model Intercomparison Project. Here we analyse the results from 16 climate models in terms of Arctic sea ice. The multi-model mean reduction in minimum sea ice area from the pre industrial period (PI) to the LIG reaches 50 % (multi-model mean LIG area is 3.20×106 km2, compared to 6.46×106 km2 for the PI). On the other hand, there is little change for the maximum sea ice area (which is 15–16×106 km2 for both the PI and the LIG. To evaluate the model results we synthesise LIG sea ice data from marine cores collected in the Arctic Ocean, Nordic Seas and northern North Atlantic. The reconstructions for the northern North Atlantic show year-round ice-free conditions, and most models yield results in agreement with these reconstructions. Model–data disagreement appear for the sites in the Nordic Seas close to Greenland and at the edge of the Arctic Ocean. The northernmost site with good chronology, for which a sea ice concentration larger than 75 % is reconstructed even in summer, discriminates those models which simulate too little sea ice. However, the remaining models appear to simulate too much sea ice over the two sites south of the northernmost one, for which the reconstructed sea ice cover is seasonal. Hence models either underestimate or overestimate sea ice cover for the LIG, and their bias does not appear to be related to their bias for the pre-industrial period. Drivers for the inter-model differences are different phasing of the up and down short-wave anomalies over the Arctic Ocean, which are associated with differences in model albedo; possible cloud property differences, in terms of optical depth; and LIG ocean circulation changes which occur for some, but not all, LIG simulations. Finally, we note that inter-comparisons between the LIG simulations and simulations for future climate with moderate (1 % yr−1) CO2 increase show a relationship between LIG sea ice and sea ice simulated under CO2 increase around the years of doubling CO2. The LIG may therefore yield insight into likely 21st century Arctic sea ice changes using these LIG simulations

    Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)

    Get PDF
    The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 127 000 years ago (lig127k), designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models as for the future and following a common experimental protocol. Here we present a first analysis of a multi-model ensemble of 17 climate models, all of which have completed the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of these models varies from 1.8 to 5.6 ∘C. The seasonal character of the insolation anomalies results in strong summer warming over the Northern Hemisphere continents in the lig127k ensemble as compared to the CMIP6 piControl and much-reduced minimum sea ice in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than the CMIP6 midHolocene simulations as expected from the larger insolation anomalies at 127 than 6 ka. New synthesis for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and for precipitation over the Northern Hemisphere continents. The model–data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions. The CMIP6–Paleoclimate Modeling Intercomparison Project (PMIP4) lig127k simulations, in combination with the proxy record, improve our confidence in future projections of monsoons, surface temperature, and Arctic sea ice, thus providing a key target for model evaluation and optimization

    Exploring the Role of Crystal Water in Potassium Manganese Hexacyanoferrate as a Cathode Material for Potassium-Ion Batteries

    No full text
    The Prussian Blue analogue K2−ήMn[Fe(CN)6]1−ɣ∙nH2O is regarded as a key candidate for potassium-ion battery positive electrode materials due to its high specific capacity and redox potential, easy scalability, and low cost. However, various intrinsic defects, such as water in the crystal lattice, can drastically affect electrochemical performance. In this work, we varied the water content in K2−ήMn[Fe(CN)6]1−ɣ∙nH2O by using a vacuum/air drying procedure and investigated its effect on the crystal structure, chemical composition and electrochemical properties. The crystal structure of K2−ήMn[Fe(CN)6]1−ɣ∙nH2O was, for the first time, Rietveld-refined, based on neutron powder diffraction data at 10 and 300 K, suggesting a new structural model with the Pc space group in accordance with Mössbauer spectroscopy. The chemical composition was characterized by thermogravimetric analysis combined with mass spectroscopy, scanning transmission electron microscopy microanalysis and infrared spectroscopy. Nanosized cathode materials delivered electrochemical specific capacities of 130–134 mAh g−1 at 30 mA g−1 (C/5) in the 2.5–4.5 V (vs. K+/K) potential range. Diffusion coefficients determined by potentiostatic intermittent titration in a three-electrode cell reached 10−13 cm2 s−1 after full potassium extraction. It was shown that drying triggers no significant changes in crystal structure, iron oxidation state or electrochemical performance, though the water level clearly decreased from the pristine to air- and vacuum-dried samples

    THE GROSSER ALETSCHGLETSCHER DYNAMICS: FROM A “MINIMAL MODEL” TO A STOCHASTIC EQUATION

    No full text
    Mountain glaciers manifest oscillations at different time-scales. Apart from synchronous reaction to lasting changes, there is asynchronism between climatic forcing and observed anomalies of the glaciers. Based on general theories on the laws of temporal dynamics relating to massive inertial objects, the observed interannual changes of glacier length could result from the accumulation of small anomalies in the heat/water fluxes. Despite the fact that the original model of the dynamics of mountain glaciers is deterministically based on the physical law of conservation of water mass, the model of length change is interpreted as stochastic; from this perspective, it is the Langevin equation that incorporates the action of temperature anomalies and precipitation like random white noise. The process is analogous to Brownian motion. Under these conditions, the Grosser Aletschgletscher (selected as an example) is represented by a system undergoing a random walk. It was shown that the possible range of variability covers the observed interval of length fluctuations

    Shift in VEGFA isoform balance towards more angiogenic variants is associated with tumor stage and differentiation of human hepatocellular carcinoma

    No full text
    Background Hepatocellular carcinoma (HCC) is the most common and aggressive type of malignant liver tumor. HCC progression depends significantly on its vascularization and formation of new blood vessels. Vascular endothelial growth factor A (VEGFA) is a crucial regulator of tumor vascularization and components of VEGF-induced cell signaling pathways are important targets of therapeutical drugs that demonstrated the highest efficiency in case of advanced HCC (sorafenib and regorafenib). VEGFA is expressed as a set of isoforms with different functional properties, thus VEGFA isoform expression pattern may affect tumor sensitivity to anti-angiogenic drugs. However, information about VEGFA isoforms expression in HCC is still incomplete and contradictory. The present study aims to quantitatively investigate VEGFA isoform expression aberrations in HCC tissue. Methods A total of 50 pairs of HCC and non-tumor tissue samples were used to evaluate the VEGFA isoform spectrum using RT-PCR and quantitatively estimate changes in isoform expression using RT-qPCR. Correlations between these changes and tumor clinicopathological characteristics were analyzed. Results We identified VEGFA-189, VEGFA-165, and VEGFA-121 as predominant isoforms in liver tissue. Anti-angiogenic VEGFA-xxxb variants constituted no more than 5% of all mature VEGFA transcripts detected and their expression was not changed significantly in HCC tissue. We demonstrated for the first time that the least active variant VEGFA-189 is frequently repressed in HCC (p < 0.001), while no uniform changes were detected for potent angiogenesis stimulators VEGFA-165 and VEGFA-121. Isoform balance in HCC shifts from VEGFA-189 towards VEGFA-165 or VEGFA-121 in the majority of cases (p < 0.001). Changes in fractions, but not expression levels, of VEGFA-189 (decrease) and VEGFA-121 (increase) correlated with advanced Tumor-Node-Metastasis (TNM) and Barcelona Clinic Liver Cancer (BCLC) tumor stages (p < 0.05), VEGFA-189 fraction reduction was also associated with poor tumor differentiation (p < 0.05). Discussion A distinct shift in VEGFA isoform balance towards more pro-angiogenic variants occurs in HCC tissue and may modulate overall impact of VEGFA signaling. We suppose that the ratio between VEGFA isoforms is an important parameter governing HCC angiogenesis that may affect HCC progression and be used for optimizing the strategy of HCC therapy by predicting the response to anti-angiogenic drugs

    Unexpected Chain of Redox Events in Co-Based Prussian Blue Analogues

    No full text
    The electronic structure of electrode materials for metal-ion batteries has a great impact on their charge compensation mechanism and, consequently, electrochemical behavior. In this paper, we report on the cobalt doping in the potassium manganese hexacyanoferrate positive electrode material for potassium-ion batteries, resulting in the formation of a system of K2−ήCoxMn1–x[Fe(CN)6] compounds with x = 0...1 and provide their comprehensive characterization including crystal structure evolution and charge compensation mechanisms upon K de/intercalation. Synthesized by a coprecipitation method, K2−ήCoxMn1–x[Fe(CN)6] forms two series of solid solutions with monoclinic (Co-poor) and cubic (Co-rich) structures. According to energy-dispersive X-ray analysis, the K content diminishes with increasing x value. Electrochemical properties of electrode materials based on K2−ήCoxMn1–x[Fe(CN)6] in K-metal half cells are also strongly dependent on Co doping regarding both specific capacity and redox potential. Attempts to interpret the results led to an unexpected conclusion that cobalt has influence on iron and manganese redox potentials, forming the following oxidation sequence: Co2+/3+, Mn2+/3+, and Fe2+/3+ in K2−ήCoxMn1–x[Fe(CN)6], which is inverse to that of Co-free K2−ήMn[Fe(CN)6] (Fe2+/3+, Mn2+/3+), as validated by ex situ, operando X-ray absorption spectroscopy, and 57Fe Mössbauer spectroscopy
    corecore