730 research outputs found
Improved Sizing of Impact Damage in Composites Based on Thermographic Response
Impact damage in thin carbon fiber reinforced polymer composites often results in a relatively small region of damage at the front surface, with increasing damage near the back surface. Conventional methods for reducing the pulsed thermographic responses of the composite tend to underestimate the size of the back surface damage, since the smaller near surface damage gives the largest thermographic indication. A method is presented for reducing the thermographic data to produce an estimated size for the impact damage that is much closer to the size of the damage estimated from other NDE techniques such as microfocus x-ray computed tomography and pulse echo ultrasonics. Examples of the application of the technique to experimental data acquired on specimens with impact damage are presented. The method is also applied to the results of thermographic simulations to investigate the limitations of the technique
Picoradian deflection measurement with an interferometric quasi-autocollimator using weak value amplification
We present an "interferometric quasi-autocollimator" that employs weak value
amplification to measure angular deflections of a target mirror. The device has
been designed to be insensitive to all translations of the target. We present a
conceptual explanation of the amplification effect used by the device. An
implementation of the device demonstrates sensitivities better than 10
picoradians per root hertz between 10 and 200 hertz.Comment: To be published in Optics Letter
A First Comparison of Kepler Planet Candidates in Single and Multiple Systems
In this letter we present an overview of the rich population of systems with
multiple candidate transiting planets found in the first four months of Kepler
data. The census of multiples includes 115 targets that show 2 candidate
planets, 45 with 3, 8 with 4, and 1 each with 5 and 6, for a total of 170
systems with 408 candidates. When compared to the 827 systems with only one
candidate, the multiples account for 17 percent of the total number of systems,
and a third of all the planet candidates. We compare the characteristics of
candidates found in multiples with those found in singles. False positives due
to eclipsing binaries are much less common for the multiples, as expected.
Singles and multiples are both dominated by planets smaller than Neptune; 69
+2/-3 percent for singles and 86 +2/-5 percent for multiples. This result, that
systems with multiple transiting planets are less likely to include a
transiting giant planet, suggests that close-in giant planets tend to disrupt
the orbital inclinations of small planets in flat systems, or maybe even to
prevent the formation of such systems in the first place.Comment: 13 pages, 13 figures, submitted to ApJ Letter
Kepler-432: a red giant interacting with one of its two long period giant planets
We report the discovery of Kepler-432b, a giant planet ()
transiting an evolved star with an orbital period of days. Radial velocities (RVs) reveal that
Kepler-432b orbits its parent star with an eccentricity of , which we also measure independently with
asterodensity profiling (AP; ), thereby confirming
the validity of AP on this particular evolved star. The well-determined
planetary properties and unusually large mass also make this planet an
important benchmark for theoretical models of super-Jupiter formation.
Long-term RV monitoring detected the presence of a non-transiting outer planet
(Kepler-432c; days), and adaptive optics imaging revealed a nearby
(0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf.
The host star exhibits high signal-to-noise asteroseismic oscillations, which
enable precise measurements of the stellar mass, radius and age. Analysis of
the rotational splitting of the oscillation modes additionally reveals the
stellar spin axis to be nearly edge-on, which suggests that the stellar spin is
likely well-aligned with the orbit of the transiting planet. Despite its long
period, the obliquity of the 52.5-day orbit may have been shaped by star-planet
interaction in a manner similar to hot Jupiter systems, and we present
observational and theoretical evidence to support this scenario. Finally, as a
short-period outlier among giant planets orbiting giant stars, study of
Kepler-432b may help explain the distribution of massive planets orbiting giant
stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015
(submitted Nov 11, 2014). Updated with minor changes to match published
versio
Two New Long-Period Giant Planets from the McDonald Observatory Planet Search and Two Stars with Long-Period Radial Velocity Signals Related to Stellar Activity Cycles
We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ^1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 M_(Jup) and an orbital semimajor axis of 5.2 AU. The giant planet ψ^1 Dra Bb has a minimum mass of 1.5 M_(Jup) and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ^1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter–Saturn pair. The primary of the binary star system, ψ^1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet
Two Earth-sized planets orbiting Kepler-20
Since the discovery of the first extrasolar giant planets around Sun-like
stars, evolving observational capabilities have brought us closer to the
detection of true Earth analogues. The size of an exoplanet can be determined
when it periodically passes in front of (transits) its parent star, causing a
decrease in starlight proportional to its radius. The smallest exoplanet
hitherto discovered has a radius 1.42 times that of the Earth's radius (R
Earth), and hence has 2.9 times its volume. Here we report the discovery of two
planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth
(0.87R Earth), orbiting the star Kepler-20, which is already known to host
three other, larger, transiting planets. The gravitational pull of the new
planets on the parent star is too small to measure with current
instrumentation. We apply a statistical method to show that the likelihood of
the planetary interpretation of the transit signals is more than three orders
of magnitude larger than that of the alternative hypothesis that the signals
result from an eclipsing binary star. Theoretical considerations imply that
these planets are rocky, with a composition of iron and silicate. The outer
planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011;
Published online 20 December 201
Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj
The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift ) was
discovered by the Lick Observatory Supernova Search 4.9 days after the fitted
first-light time (FFLT; 11.1 days before -band maximum). Our first detection
(pre-discovery) is merely day after the FFLT, making SN 2016coj one
of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr
after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We
performed high-quality photometry, low- and high-resolution spectroscopy, and
spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN
Ia, but with a high velocity of \ion{Si}{2} 6355 (\,\kms\
around peak brightness). The \ion{Si}{2} 6355 velocity evolution can
be well fit by a broken-power-law function for up to a month after the FFLT. SN
2016coj has a normal peak luminosity ( mag), and it
reaches a -band maximum \about16.0~d after the FFLT. We estimate there to be
low host-galaxy extinction based on the absence of Na~I~D absorption lines in
our low- and high-resolution spectra. The spectropolarimetric data exhibit weak
polarization in the continuum, but the \ion{Si}{2} line polarization is quite
strong () at peak brightness.Comment: Submitte
Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates
We present the discovery of the Kepler-20 planetary system, which we
initially identified through the detection of five distinct periodic transit
signals in the Kepler light curve of the host star 2MASSJ19104752+4220194. We
find a stellar effective temperature Teff=5455+-100K, a metallicity of
[Fe/H]=0.01+-0.04, and a surface gravity of log(g)=4.4+-0.1. Combined with an
estimate of the stellar density from the transit light curves we deduce a
stellar mass of Mstar=0.912+-0.034 Msun and a stellar radius of
Rstar=0.944^{+0.060}_{-0.095} Rsun. For three of the transit signals, our
results strongly disfavor the possibility that these result from astrophysical
false positives. We conclude that the planetary scenario is more likely than
that of an astrophysical false positive by a factor of 2e5 (Kepler-20b), 1e5
(Kepler-20c), and 1.1e3 (Kepler-20d), sufficient to validate these objects as
planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is
independently disfavored by the achromaticity of the transit: From Spitzer data
gathered at 4.5um, we infer a ratio of the planetary to stellar radii of
0.075+-0.015 (Kepler-20c) and 0.065+-0.011 (Kepler-20d), consistent with each
of the depths measured in the Kepler optical bandpass. We determine the orbital
periods and physical radii of the three confirmed planets to be 3.70d and
1.91^{+0.12}_{-0.21} Rearth for Kepler-20b, 10.85 d and 3.07^{+0.20}_{-0.31}
Rearth for Kepelr-20c, and 77.61 d and 2.75^{+0.17}_{-0.30} Rearth for
Kepler-20d. From multi-epoch radial velocities, we determine the masses of
Kepler-20b and Kepler-20c to be 8.7\+-2.2 Mearth and 16.1+-3.5 Mearth,
respectively, and we place an upper limit on the mass of Kepler-20d of 20.1
Mearth (2 sigma).Comment: accepted by ApJ, 58 pages, 12 figures revised Jan 2012 to correct
table 2 and clarify planet parameter extractio
Five Kepler target stars that show multiple transiting exoplanet candidates
We present and discuss five candidate exoplanetary systems identified with
the Kepler spacecraft. These five systems show transits from multiple exoplanet
candidates. Should these objects prove to be planetary in nature, then these
five systems open new opportunities for the field of exoplanets and provide new
insights into the formation and dynamical evolution of planetary systems. We
discuss the methods used to identify multiple transiting objects from the
Kepler photometry as well as the false-positive rejection methods that have
been applied to these data. One system shows transits from three distinct
objects while the remaining four systems show transits from two objects. Three
systems have planet candidates that are near mean motion
commensurabilities---two near 2:1 and one just outside 5:2. We discuss the
implications that multitransiting systems have on the distribution of orbital
inclinations in planetary systems, and hence their dynamical histories; as well
as their likely masses and chemical compositions. A Monte Carlo study indicates
that, with additional data, most of these systems should exhibit detectable
transit timing variations (TTV) due to gravitational interactions---though none
are apparent in these data. We also discuss new challenges that arise in TTV
analyses due to the presence of more than two planets in a system.Comment: Accepted to Ap
Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey
We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to
search for dependencies between SN Ia properties and the projected distance to
the host galaxy center, using the distance as a proxy for local galaxy
properties (local star-formation rate, local metallicity, etc.). The sample
consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at
redshifts below 0.25. The sample is split into two groups depending on the
morphology of the host galaxy. We fit light-curves using both MLCS2k2 and
SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters
for each SN Ia, as well as its residual in the Hubble diagram. We then
correlate these parameters with both the physical and the normalized distances
to the center of the host galaxy and look for trends in the mean values and
scatters of these parameters with increasing distance. The most significant (at
the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c
from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies.
We also find indications that SNe in elliptical galaxies tend to have narrower
light-curves if they explode at larger distances, although this may be due to
selection effects in our sample. We do not find strong correlations between the
residuals of the distance moduli with respect to the Hubble flow and the
galactocentric distances, which indicates a limited correlation between SN
magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5
figures, 8 tables
- …
