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ABSTRACT

The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.004523) was discovered by the
Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before
B-band maximum). Our first detection (pre-discovery) is merely 0.6±0.5 day after the FFLT, making
SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after
discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality
photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj
is a spectroscopically normal SN Ia, but with a high velocity of Si II λ6355 (∼ 12, 600km s−1 around
peak brightness). The Si II λ6355 velocity evolution can be well fit by a broken-power-law function
for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (MB ≈ −18.9 ± 0.2
mag), and it reaches a B-band maximum ∼16.0 d after the FFLT. We estimate there to be low host-
galaxy extinction based on the absence of Na I D absorption lines in our low- and high-resolution
spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the Si II line
polarization is quite strong (∼ 0.9%± 0.1%) at peak brightness.

Subject headings: supernovae: general — supernovae: individual (SN 2016coj)

1 Department of Astronomy, University of California, Berkeley,
CA 94720-3411, USA.

2 e-mail: zwk@astro.berkeley.edu .
3 Department of Astronomy, University of Washington, Box

351580, U.W., Seattle, WA 98195-1580, USA.
4 Las Cumbres Observatory Global Telescope Network, 6740

Cortona Dr Ste 102, Goleta, CA 93117-5575, USA.
5 Department of Physics, University of California, Santa Bar-

bara, CA 93106-9530, USA.
6 Department of Astronomy, University of Texas, Austin, TX

78712, USA.
7 NSF Astronomy and Astrophysics Postdoctoral Fellow.
8 Physics Department and Tsinghua Center for Astrophysics, Ts-

inghua University, Beijing, 100084, China.
9 Pennel Observatory, 29 Wrights Way, South Wonston, Hants

S021 3He
10 Department of Astronomy and Astrophysics, University of

California, Santa Cruz, CA 95064, USA.
11 Department of Physics and Astronomy, University of Califor-

nia, 4129 Frederick Reines Hall, Irvine, CA 92697, USA.
12 Department of Physics and Astronomy, University of Califor-

nia, 430 Portola Plaza, Los Angeles, CA 90095, USA.
13 Kavli Institute for Theoretical Physics, University of Califor-

nia, Santa Barbara, CA 93106-4030, USA.
14 Physics Department, California Polytechnic State University,

San Luis Obispo, CA 93407, USA.
15 Institute for Astronomy, University of Hawaii, 2680 Wood-

lawn Dr., Honolulu, HI 96822, USA.
16 Department of Physics and Astronomy, University of Califor-

nia, 900 University Avenue, Riverside, CA 92521, USA.
17 Lawrence Berkeley National Laboratory, Berkeley, California

94720, USA.
18 Department of Physics, University of California, Berkeley,

94720, USA.
19 Department of Physics, University of California, Davis, 1

Shields Ave, Davis, CA 95616-5270, USA.
20 George P. and Cynthia Woods Mitchell Institute for Funda-

mental Physics and Astronomy, Department of Physics and Astron-
omy, Texas A&M University, College Station, TX 77843, USA.

1. INTRODUCTION

Type Ia supernovae (SNe Ia; see Filippenko 1997 for
a review of supernova classification) are the thermonu-
clear runaway explosions of carbon/oxygen white dwarfs
(see, e.g., Hillebrandt & Niemeyer 2000 for a review).
They can be used as standardizable candles with many
important applications, including measurements of the
expansion rate of the Universe (Riess et al. 1998; Perl-
mutter et al. 1999). Two general scenarios are favored
as the progenitor system for SNe Ia. One is the single-
degenrate model (Hoyle & Fowler 1960; Hachisu et al.
1996; Meng et al. 2009; Röpke et al. 2012), which con-
sists of a single white dwarf accreting material from a
companion. The other is the double-degenerate scenario
involving the merger of two white dwarfs (Webbink 1984;
Iben & Tutukov 1984; Pakmor et al. 2012; Röpke et al.
2012). However, our understanding of their progenitor
systems and explosion mechanisms remains substantially
incomplete.
Very early discovery and detailed follow-up observa-

tions are essential for understanding those problems. For
example, Bloom et al. (2012) were able to constrain the
companion-star radius to be . 0.1R⊙ from an optical
nondetection just 4 hr after the explosion of SN 2011fe
(Nugent et al. 2011). Cao et al. (2015) found strong
but declining ultraviolet emission in SN Ia iPTF14atg in
early-time Swift observations, consistent with theoreti-
cal expectations of the collision between supernova (SN)
ejecta and a companion star (Kasen 2010). Im et al.
(2015) found evidence of a “dark phase” in SN 2015F,
which can last for a few hours to days between the mo-
ment of explosion and the first observed light (e.g., Rabi-
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nak, Livne, & Waxman 2012; Piro & Nakar 2013, 2014);
see also Cao et al. (2016) for the case of iPTF14pdk.
Differences in the duration of the “dark phase” could be
caused by a varying distribution of 56Ni near the surface
of a SN Ia. For example, Piro & Morozova (2016) show
that it is short (with a steep rise) when the 56Ni is shal-
low, and longer (with a more gradual rise) when the 56Ni
is deeper (see their Figure 7).
Spectra of SNe Ia not only reveal the ejecta compo-

sition from nuclear burning, but also provide a way to
measure the ejecta expansion velocity. Benetti et al.
(2005) separated SN Ia samples into different groups ac-
cording to their velocity gradient and found that high-
velocity-gradient objects tend to have a higher velocity
of the Si II λ6355 line near maximum light. Nugent et
al. (1995) quantified the spectral diversity using line-
strength ratios, finding a good correlation between the
absorption-depth ratio of Si II λ5972 to Si II λ6355) and
the brightness decline rate. Wang et al. (2009; 2013)
and Foley et al. (2011a) separated SNe Ia into high-
velocity and normal-velocity groups with a boundary at
11,800km s−1 at peak brightness, and found that the for-
mer are ∼ 0.1mag (on average) redder in B−V than the
latter.
Meanwhile, high-resolution spectral observations pro-

vide a powerful way to study absorption along the line
of sight, both from the interstellar medium and circum-
stellar material. Patat et al. (2007) found a complex of
Na I D lines that showed evolution in SN 2006X (Wang
et al. 2008). Two additional cases of time-variable Na
absorption are provided by Blondin et al. (2009) and
Simon et al. (2009). Sternberg et al. (2014) found that
in their sample with high-resolution spectra, ∼ 18% of
SNe Ia exhibit time-variable Na, indicating the presence
of circumstellar material and suggesting that it may be
more common than expected in SNe Ia, though some ob-
jects do not show evolution (e.g., SN 2014J; Graham et
al. 2015).
Spectropolarimetry can be used to probe the geome-

try of SNe Ia (see Wang & Wheeler 2008 for a review).
The continuum polarization, an indication of the pho-
tosphere’s shape, was found to be quite low in SNe Ia,
on the order of a few tenths of a percent (Höflich 1991;
Wang et al. 1997). But for individual SNe Ia, significant
line polarization is sometimes observed (e.g., Wang et al.
2003; Kasen et al. 2003). Wang et al. (2007) also found
a correlation between the degree of polarization of Si II
λ6355 and the brightness decline rate.
Observationally, there are numerous efforts to discover

SNe Ia at very early times, which can benefit follow-up
observations in many ways. Recent examples of early-
observed and well-studied SNe Ia include SN 2009ig (Fo-
ley et al. 2012), SN 2011fe (Nugent et al. 2011; Li et al.
2011), SN 2012cg (Silverman et al. 2012a), SN 2013dy
(Zheng et al., 2013), iPTF13ebh (Hsiao et al. 2015),
SN 2014J (Zheng et al. 2014; Goobar et al. 2014; Gra-
ham et al. 2015), and ASASSN-14lp (Shappee et al.
2016); like SN 2016coj discussed here, they were either
discovered or detected shortly after exploding.
In 2011, the observing strategy for our Lick Observa-

tory Supernova Search (LOSS; Filippenko et al. 2001;
Filippenko 2005; Leaman et al. 2011) with the 0.76m
Katzman Automatic Imaging Telescope (KAIT) was
modified to monitor fewer galaxies but at a more rapid

cadence, with the objective of promptly identifying very
young SNe (hours to days after explosion). In the past
few years, this strategy has led to discoveries of all types
of young SNe, where we define a SN to be “young” if
there was a KAIT nondetection 1–3 days before the first
detection or if it was spectroscopically confirmed to be
within a few days after explosion. SN 2012cg (Silverman
et al. 2012a) was the first case, followed by more than a
dozen others (e.g., SN 2012ck, Kandrashoff et al. 2012;
SN 2012ea, Cenko et al. 2012; SN 2013ab, Blanchard
et al. 2013; SN 2013dy, Zheng et al. 2013; SN 2013ej,
Dhungana et al. 2016; SN 2013gh, Hayakawa et al. 2013;
SN 2013fv, Kim et al. 2013a; SN 2013gd, Casper et al.
2013; SN 2013gy, Kim et al. 2013b; SN 2014C, Kim et
al. 2014a; SN 2014J, though not discovered by KAIT,
but with KAIT early detections, see Zheng et al. 2014;
SN 2014ce, Kim et al. 2014b; SN 2014eh, Kumar et
al. 2014; SN 2015N, Stegman et al. 2015a; SN 2015U,
Shivvers et al. 2016; SN 2015X, Hughes et al. 2015;
SN 2015O, Ross et al. 2015; SN 2015be, Stegman et al.
2015b; and SN 2016esw, Halevi et al. 201621;).
SN 2016coj was another SN discovered by KAIT when

very young, merely 0.6±0.5day after the fitted first-light
time (FFLT). Here we present the first 40 days of our
optical photometric, low- and high-resolution spectro-
scopic, and spectropolarimetric follow-up observations
and analysis of it.

2. DISCOVERY AND OBSERVATIONS

SN 2016coj was discovered in an 18 s unfiltered KAIT
image taken at 04:39:05 on 2016 May 28 (UT dates
are used throughout this paper), at 14.98 ± 0.03mag
(close to the R band; see Li et al. 2003). It was re-
ported to the Transient Name Server (TNS) shortly af-
ter discovery by Yuk, Zheng, & Filippenko22 (see also
Zheng et al. 2016). We measure its J2000.0 coordi-
nates to be α = 12h08m06.′′80, δ = +65◦10′38.′′2, with
an uncertainty of 0.′′5 in each coordinate. SN 2016coj
is 5.′′0 east and 10.′′8 north of the nucleus of the host
galaxy NGC 4125, which has redshift z = 0.004523
according to the NASA/IPAC Extragalactic Database
(NED23), an early-type peculiar elliptical morphology
(E6 pec; de Vaucouleurs et al. 1991), and a stellar mass
of 2.4×1011M⊙ from its 3.6µm flux (Wilson et al. 2013).
KAIT performed photometric follow-up observations

of SN 2016coj with nearly daily cadence after discov-
ery. The data were reduced using our image-reduction
pipeline (Ganeshalingam et al. 2010). We applied an
image-subtraction procedure to remove host-galaxy light,
and point-spread-function photometry was then obtained
using DAOPHOT (Stetson 1987) from the IDL Astron-
omy User’s Library24. The unfiltered instrumental mag-
nitudes, which are found to be close to the R band (Li
et al. 2003), are calibrated to local SDSS standards
(see Figure 1) transformed into Landolt R-band magni-
tudes25. Here we publish our unfiltered photometry (Ta-
ble 1). We have also obtained a filtered data sequence,
but we are still awaiting high-quality galaxy template

21 https://wis-tns.weizmann.ac.il//object/2016esw
22 https://wis-tns.weizmann.ac.il//object/2016coj
23 http://ned.ipac.caltech.edu/
24 http://idlastro.gsfc.nasa.gov/
25 http://www.sdss.org/dr7/algorithms/sdssUBVRITransform.html#Lupton2005
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Fig. 1.— KAIT unfiltered image showing the location of
SN 2016coj. Three reference stars are also marked with circles.

Fig. 2.— Left panels: Arbour’s image taken on May 23. Middle
panels: KAIT unfiltered image taken on May 24. Right panels:
KAIT unfiltered image taken on May 28. Upper panels show the
original image and lower panels show the residual after subtraction;
SN 2016coj is marked.

images in those bands.
Interestingly, we find that SN 2016coj was detected in

a KAIT prediscovery image taken at 04:30:35 on May 24
(see middle panels of Figure 2) with an unfiltered mag of
18.02± 0.22, which means the SN had brightened ∼ 3.0
mag in the following four days until it was discovered.
In addition, an unfiltered prediscovery detection was ob-
tained at 21:48:57 on May 23, 6.7 hr earlier than KAIT’s
first detection, by R. Arbour with a 0.35m f/6 Schmidt-
Cassegrain reflector (see left panels of Figure 2). Using
a template image taken on 2016 April 5, we performed
the same subtraction and calibration methods as for the
KAIT unfiltered images. We find a SN unfiltered bright-
ness of 18.06 ± 0.42mag, consistent with KAIT’s first
detection. A ∼ 5mag detection before peak magnitude,
along with our analysis in the following section, confirms
that SN 2016coj is one of the youngest SNe Ia ever de-
tected.
Two classification spectra of SN 2016coj were obtained

shortly (∼ 3.7 hr) after the SN was discovered (∼ 5.0 days

TABLE 1
Unfiltered Photometry of SN 2016coj

MJD UT Mag Error From

57520.2370 May 12.2370 >19.6 - KAIT
57522.2513 May 14.2513 >19.4 - KAIT
57524.2240 May 16.2240 >19.4 - KAIT
57525.2479 May 17.2479 >19.3 - KAIT
57527.2708 May 18.2708 >19.2 - KAIT
57531.9092 May 23.9092 18.06 0.42 R. Arbour
57532.1877 May 24.1877 18.02 0.22 KAIT
57536.2694 May 28.2694 14.98 0.03 KAIT
57537.2196 May 29.2196 14.50 0.04 KAIT
57538.1827 May 30.1827 14.11 0.03 KAIT
57539.1814 May 31.1814 13.85 0.03 KAIT
57540.2518 June 01.2518 13.54 0.04 KAIT
57541.2022 June 02.2022 13.39 0.06 KAIT
57542.2075 June 03.2075 13.18 0.03 KAIT
57543.2120 June 04.2120 13.16 0.03 KAIT
57544.1995 June 05.1995 13.02 0.03 KAIT
57545.2245 June 06.2245 13.00 0.03 KAIT
57546.2200 June 07.2200 12.95 0.03 KAIT
57547.2051 June 08.2051 12.93 0.03 KAIT
57548.2197 June 09.2197 12.94 0.04 KAIT
57549.2162 June 10.2162 12.99 0.05 KAIT
57550.2638 June 11.2638 12.97 0.02 KAIT
57551.2201 June 12.2201 13.01 0.03 KAIT
57552.2516 June 13.2516 13.03 0.03 KAIT
57553.2115 June 14.2115 13.15 0.03 KAIT
57555.2189 June 16.2189 13.27 0.03 KAIT
57556.2284 June 17.2284 13.30 0.03 KAIT
57558.2110 June 19.2110 13.52 0.02 KAIT
57559.2229 June 20.2229 13.61 0.04 KAIT
57560.2189 June 21.2189 13.66 0.04 KAIT
57561.2097 June 22.2097 13.70 0.04 KAIT

after the FFLT). The spectra were taken with the Kast
double spectrograph (Miller & Stone 1993) on the Shane
3m telescope at Lick Observatory and the FLOYDS
robotic spectrograph on the Las Cumbres Observatory
Global Telescope Network (LCOGT; Brown et al. 2013)
2.0m Faulkes Telescope North on Haleakala, Hawaii. We
obtained nearly daily spectra of SN 2016coj with different
instruments including Kast, FLOYDS, the BFOSC spec-
trograph on the 2.16m telescope at Xinglong station of
NAOC (China), the Low Resolution Imaging Spectrome-
ter (LRIS; Oke et al. 1995) on the 10m Keck I telescope,
and the Kitt Peak Ohio State Multi-Object Spectrograph
(KOSMOS; Martini et al. 2014) on the KPNO May-
all 4m telescope. Data were reduced following standard
techniques for CCD processing and spectrum extraction
using IRAF. The spectra were flux calibrated through
observations of appropriate spectrophotometric standard
stars. All Kast and LRIS spectra were taken at or near
the parallactic angle (Filippenko 1982) to minimize dif-
ferential light losses caused by atmospheric dispersion.
Low-order polynomial fits to calibration-lamp spectra
were used to calibrate the wavelength scale, and small
adjustments derived from night-sky lines in the target
frames were applied. Flux calibration and telluric-band
removal were done with our own IDL routines; details
are described by Silverman et al. (2012d).
We also obtained four epochs of Lick/Shane spectropo-

larimetry using the polarimetry mode of the Kast spec-
trograph on May 30, June 8, June 16, and July 6. The
spectra were observed at each of four waveplate an-
gles (0◦, 45◦, 22.5◦, and 67.5◦) with several waveplate
sequences coadded to improve the signal-to-noise ratio
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Fig. 3.— KAIT unfiltered (red) light curve of SN 2016coj. The
solid black line is the t2.0 model fit to the red solid circles. The
blue cross marks the earliest detection at 0.6±0.5 d after the fitted
first light observed by R. Arbour. Red triangles show the KAIT
upper limits before explosion.

(S/N). Each night, both low- and high-polarization stan-
dard stars were also observed in order to calibrate the
data. All of the spectropolarimetric reductions and cal-
culations follow the method described by Mauerhan et
al. (2015), and the polarimetric parameters are defined
in the same manner (Stokes parameters q and u, debiased
polarization P , and sky position angle θ).
In addition, we observed SN2016coj on May 31, June

2, 4, and 6 with the 2.4m Automated Planet Finder
(APF) telescope at Lick Observatory. The APF hosts
the Levy Spectrograph, a high-resolution optical echelle
spectrograph with resolution R(5500 Å) ≈ 110,000 with
a slit width of 1′′ (Vogt et al. 2014). At each epoch
we obtained three 1800 s spectra with the M decker (1.′′0
wide, 8.′′0 long to allow for background subtraction), re-
duced the data with a custom pipeline, and corrected for
the redshift of the host galaxy (z = 0.004523) and for the
barycentric velocity (∼ −15km s−1). Because the appar-
ent magnitude (peaking at ∼ 13 mag) of SN2016coj is
a bit faint for APF, the S/N of our spectra was . 10 at
best, significantly lower than obtained with APF spec-
tra of the bright (peak ∼ 10mag), nearby SN Ia 2014J
(Graham et al. 2015).

3. ANALYSIS AND RESULTS

3.1. Light Curve

Figure 3 shows our unfiltered light curve of SN 2016coj.
In order to determine the first-light time t0 (note that the
SN may exhibit a “dark phase”), one can assume that the
SN luminosity scales as the surface area of the expand-
ing fireball, and therefore increases quadratically with
time (L ∝ t2, commonly known as the t2 model; Arnett
1982; Riess et al. 1999). The t2 model fits well for sev-
eral SNe Ia with early-time observations (e.g., SN 2011fe,
Nugent et al. 2011; SN 2012ht, Yamanaka et al. 2014).
Some studies also adopt a tn model (n varies from ∼ 1.5
to ∼ 3.0; e.g., Conley et al. 2006; Ganeshalingam et
al. 2011; Firth et al. 2015). Interestingly, Zheng et
al. (2013, 2014) use a broken-power-law model to esti-
mate the first-light time of SN 2013dy and SN 2014J.
However, since our early-time photometric coverage of

SN 2016coj is not as good as that of SN 2013dy and
SN 2014J, we simply apply the t2 model to fit the KAIT
unfiltered data for the first few days (red solid circles
in Figure 3); thereafter, the light curve starts deviating
from the t2 model. We also exclude Arbour’s unfiltered
detection (blue cross), considering the different response
curve compared to the KAIT unfiltered data: Arbour’s
unfiltered band is closer to V (see Botticella et al. 2009),
while KAIT’s is closer to R (see Li et al. 2003).
We find that the best t2 model fit gives the first-light

time to be MJD = 57531.33± 0.50, around May 23.33.
Here the uncertainty (not including the “dark phase”) is
estimated by calculating the reduced χ2 ratio with the
minimum reduced χ2 at 90% confidence level, when t0
changes around the best-fitted value while all the other
parameters are fixed with the best-fitted value. Note
that the uncertainty does not include any systematic er-
ror caused by the t2 model fitting. For example, if we
include (or exclude) one data point before and after the
dataset we used, the best-fit first-light time deviates−0.4
to 1.0 days from the above first-light time. Therefore,
there could be a systematic error of up to 1.0 d from
this method, which we did not include in the follow-
ing analysis. Our results show that the first detection
(from an image by R. Arbour) was merely 0.6± 0.5 d af-
ter first light, or 0.9 d from KAIT’s first detection on May
24. This makes SN 2016coj one of the earliest detected
SNe Ia — slightly later than SN 2013dy (∼ 2.4 hr after
first light; Zheng et al. 2013) and SN 2011fe (∼ 11.0hr
after first light; Nugent et al. 2011), but similar to SN
2009ig (∼ 17 hr after first light; Foley et al. 2012).
Applying a low-order polynomial fit, we find that

SN 2016coj reached a peak magnitude of 12.91± 0.03 at
MJD = 57547.31 in KAIT unfiltered data. Although we
do not present B-band data because no B-band template
image is currently available, the fit allows us to determine
the B-band peak time: MJD = 57547.35, similar to the
result with unfiltered data. This means SN 2016coj was
discovered only 4.9 d after the fitted first light, or 11.1 d
before maximum light.
The distance modulus of the host galaxy NGC 4125 is

quite uncertain owing to different measurements given in
NED. However, some of them are outdated, or adopted
an inappropriate H0 value. The one with the small-
est uncertainty (and also the latest estimate) is 31.90±
0.14mag (Tully et al. 2013), which was based on H0 =
74.4km s−1 Mpc−1, quite close to the current widely ac-
cepted value of H0 ≈ 70. We therefore adopt this dis-
tance for the following ananlysis. With E(B − V )MW =
0.02mag (Schlafly et al. 2011) and very small (even neg-
ligible) host-galaxy extinction (see §3.2 and §3.5), this
implies SN 2016coj has MR = −19.0 ± 0.2mag at peak
brightness. Our preliminary measurement of B-band
data, assuming the host background contamination is
small, shows that the B-band peak is ∼ 13.1 ± 0.1mag
and ∆m15(B) = 1.25 ± 0.12mag. This gives MB ≈
−18.9 ± 0.2mag, but we expect MB ≈ −19.1mag from
the Phillips (1993) relation with the above value of
∆m15(B); thus, SN 2016coj is a normal-brightness SN Ia.
Its ∆m15(B) = 1.25± 0.12mag is also typical of normal
SNe Ia (see also §3.3 for the spectral classification).

3.2. Optical Spectra
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We obtained optical spectra of SN 2016coj nearly daily
for a month (Fig. 4), sometimes obtaining multiple spec-
tra in a given night.
We first examine the Na I D absorption feature, which

is often converted into reddening but with large scatter
over the empirical relationship (Poznanski et al. 2011),
in several of our high-S/N spectra. The absorption is not
clearly detected at both the Na ID rest-frame wavelength
and the redshifted wavelength of SN 2016coj. However,
there appears to be a weak absorption feature consis-
tent with the rest-frame Na I D wavelength. If real,
this could be caused by a Milky Way component, which
has E(B − V )MW = 0.02mag according to Schlafly et
al. (2011). Since we do not detect similar absorption
at the redshifted wavelength of SN 2016coj, we can put
an upper limit of E(B − V ) . 0.02mag of host-galaxy
extinction. However, if the weak absorption feature is
caused by noise instead of Milky Way gas, we can de-
termine an upper limit on E(B − V ) through compari-
son with our spectra of SN 2013dy (Zheng et al. 2013),
where we clearly detect the Na I D absorption with the
same instrument setting. For SN 2013dy, the equiva-
lent width (Wλ) is ∼ 0.5 Å from both the Milky Way
and host galaxy, giving E(B − V ) = 0.15mag. Our
similar-quality data on SN 2016coj should allow a de-
tection of 1/3 (or less) of Na I D absorption if it ex-
ists, yielding an upper limit of E(B − V ) . 0.05mag of
host-galaxy extinction. Lastly, we also estimate a 3σ up-
per limit on the Wλ of an undetected feature in a spec-
trum using the equation presented by Leonard (2007):

Wλ(3σ) = 3∆λ ∆I
√

Wline/∆λ
√

1/B, where ∆λ is the

spectral resolution element (in Å), ∆I is the 1σ root-
mean-square fluctuation of the flux around a normalized
continuum level, Wline is the full-width at half-maximum
intensity (FWHM) of the expected line feature, and B is
the number of bins per resolution element. For our high-
S/N Kast spectra, we measure ∆λ ≈ 4.0 Å, ∆I ≈ 0.015,
Wline ≈ 12.0 Å, and B = 1, which gives Wλ(3σ) ≈ 0.3 Å,
and E(B − V ) . 0.09mag of host-galaxy extinction.
All of the above suggests that the host-galaxy extinc-

tion of SN 2016coj is likely to be very small, consistent
with the nondetection of Na I D absorption in our high-
resolution spectra (see §3.5). However, note that since
the Na I D vs. extinction relation has large scatter, even
a nondetection of Na I D does not fully exclude the pos-
sibility that there may be some dust along the SN line of
sight.
The spectra show absorption features from ions typi-

cally seen in SNe Ia including Ca II, Si II, Fe II, Mg II,
S II, and O I. We do not find a clear C II feature (e.g.,
Zheng et al. 2013), which is found in over one-fourth of
all SNe Ia (e.g., Parrent et al. 2011; Thomas et al. 2011;
Folatelli et al. 2012; Silverman et al. 2012b). Strong
absorption features of Si II, including Si II λ4000, Si II
λ5972, and Si II λ6355, are clearly seen in all spectra.
The Si II λ5972 feature in SN 2016coj is quite strong
relative to those in SN 2012cg and SN 2013dy, though it
is relatively small if compared with a large SN Ia sample
(see Silverman et al. 2012c).
We measure the individual line velocities from the min-

imum of the absorption features (see Silverman et al.
2012c, for details) and show them in Figure 6. The
velocities all Si II features decrease from ∼ 13, 000–

15,000km s−1 at discovery to ∼ 11, 000–13,000km s−1

around maximum light, and they continue to decrease
thereafter.
In addition to the usual photospheric-velocity feature

(PVF) of Ca II H&K, SN 2016coj exhibits a high-velocity
feature (HVF; e.g., Mazzali et al. 2005; Maguire et
al. 2012; Folatelli et al. 2013; Childress et al. 2014;
Maguire et al. 2014; Silverman et al. 2015) in nearly
all of the early-time spectra. This HVF appears to be
detached from the rest of the photosphere, with a veloc-
ity of ∼ 25, 000km s−1 at discovery and slowing down to
∼ 20, 000kms−1 at ∼ 8 d after the fitted first-light time.
The HVF feature of Ca II H&K stays for a long time,
being distinct until roughly age +11d; thereafter, it is a
high-velocity shoulder of the Ca II H&K absorption.
A Ca II near-infrared (NIR) triplet HVF is also found

in the first few spectra that covered the wavelength
range before maximum light, and the velocity of &
22, 000km s−1 is in good agreement with that of the Ca II

H&K HVF at early times, though it is slightly smaller in
the first-epoch spectrum. Such HVFs are seen in a few
other well-observed SNe Ia, including SN 2005cf (Wang
et al. 2009) and SN 2012fr (e.g., Maund et al. 2013;
Childress et al. 2013; Zhang et al. 2014). However, in
SN 2016coj, the Ca II NIR triplet HVF becomes weaker
around peak brightness, and it completely disappears
∼ 8 d later and thereafter. This is different from the
Ca II H&K HVF, which is seen for a much longer time.
It is not obvious why the HVF of the Ca II NIR triplet
goes away after peak brightness while the HVF of Ca II

H&K persists. One possibility is that the apparent HVF
of Ca II H&K after peak could actually be Si II λ3858
(e.g., Foley 2013). In fact, it is possible that the early-
time apparent HVF of Ca II H&K could be a mixture of
Si II λ3858 (including both the HVF and PVF) plus the
true HVF of Ca II H&K. If so, the velocity of the Ca II

H&K HVF could be smaller than that shown in Figure
6, and thus more consistent with the velocity of the Ca II

NIR triplet HVF, but this case is too complicated to ver-
ify.
One note about the O I triplet feature is that we

adopted only one component in our fit. However, our
early-time spectra before peak brightness reveal that the
O I triplet has a double absorption profile. Following the
Zhao et al. (2016) method to fit the O I triplet with
both HVF and PVH (Zhao et al. also adopted a second,
faster HVF, but that is not clear in SN 2016coj), we find
an HVF O I triplet velocity of ∼ 16, 000km s−1 and a
PVF O I triplet velocity of ∼ 12, 000km s−1. The HVF
velocity is smaller than that of both Ca II H&K and the
Ca II NIR triplet. If the HVF really exists in the O I

triplet, it suggests that the oxygen in the outer layers is
not completely burned (see Zhao et al. 2016).
The strong absorption of Si II λ6355 is commonly

used to estimate the photospheric velocity. As shown
in Figure 6, the Si II λ6355 velocity of SN 2016coj
decreases rapidly from ∼ 15, 500kms−1 at discovery
to ∼ 12, 600km s−1 around peak brightness, and then
slowly decreases to ∼ 11, 600km s−1 at +11.0d after
peak. A velocity of ∼ 12, 600km s−1 at peak brightness
is ∼ 1500km s−1 higher than average in SNe Ia (e.g.,
Wang et al. 2013; > 2.5σ away from the mean of their
SN Ia velocity distribution fitted with a Gaussian). Here,
we compare the photospheric velocity measurement of
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SN 2016coj with the three well-observed SNe Ia 2009ig
(Foley et al. 2012; Marion et al. 2013), 2012cg (Silver-
man et al. 2012a), and 2013dy (Zheng et al. 2013). Note
that while both SN 2012cg and SN 2009ig have an HVF
identified for Si II λ6355, we consider only the photo-
spheric component.
Figure 6 displays the photospheric velocity evolution

over time for the four SNe Ia. Overall, the photospheric
velocity evolution is similar to the evolution seen in most
SNe Ia (e.g., Benetti et al. 2005; Foley et al. 2011b;
Silverman et al. 2012c): the velocity drops rapidly at
early times (within the first week after explosion), and
then slowly but steadily decreases thereafter. For each of
these four SNe, we consequently try to fit the early-time
velocities (typically within 10 d after first light) with a
power-law function, v = C1t

′α, where t′ is the time after
first light (t0); the results are shown in the top panel of
Fig. 6 for each SN. This is very similar to the method
Silverman et al. (2015, Fig. 12) adopted, but they used
a natural exponential function to fit the velocities before
+5d after peak brightness and also obtained reasonable
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Fig. 6.— Photospheric velocity (measured from the strong Si II λ6355 absorption) evolution of SN 2016coj (right panel), compared to
those of the well-observed SN 2009ig (left panel), SN 2012cg (middle-left panel), and SN 2013dy (middle-right panel). For all SNe Ia, the
top panels show the result of a power-law function fit to the early-time data, the middle-top panels display the result of a linear function fit
to the later-time data, the middle-bottom panels give the result of a broken-power-law function fit to all the data, and the bottom panels
show the residuals for each fit. Solid points are included in the fitting while open points are not.

fitting results. In fact, Piro & Nakar (2013, Eq. 13) math-
ematically show that the photospheric velocity could de-
cay as a power law at early times. For the later velocities
(typically > 10 d after first light), we then fit them with a
linear function, v = at′+C2 (results shown in the middle-
top panel); Silverman et al. (2012c, Fig. 5) also use the
same method to fit their data around peak brightness.
As seen in Figure 6, both the power-law function and
the linear function can fit the corresponding data well,
but only in their respective regimes — early-time data
for the power-law function and later-time data for the
linear function.
As with the early-time light-curve (Zheng et al. 2013,

2014), we find that a broken-power-law function is use-
ful for fitting the photospheric velocity evolution; a low-
index power-law function approximates the linear func-
tion found at late times. Specifically,

v = A

(

t′

tb

)α1 [

1 +

(

t′

tb

)s(α1−α2) ]−1/s

, (1)

where v is the photospheric velocity, A is a scaling con-
stant, t′ is the time after first light (t0), tb is the break
time, α1 and α2 are the two power-law indices before
and after the break (respectively), and s is a smoothing
parameter. We apply this broken-power-law function to
the entire dataset of photospheric velocities for all four
SNe until about a month after the explosion. Our fitting
results (we fixed s to be −10) are listed in Table 2 and
shown in the middle-bottom panels in Figure 6.
The power-law indices from both the power-law fit-

ting (α) and broken-powerlaw fitting (α1) at early times
are consistent with the value of −0.22 adopted by Piro
& Nakar (2014) when fitting three SNe Ia (SNe 2009ig,
2011fe, and 2012cg), and are also the value adopted by
Shappee et al. (2016) when fitting ASASSN-14lp. The
index from the broken power law (α1) is slightly steeper
than that from the power law (α). At late times (around
maximum light) with linear fitting, the rate of velocity
decrease from the fitting is slightly larger than the av-
erage rate of −38km s−1 d−1 found by Silverman et al.
(2012c) for a large sample of SNe Ia.
Overall, the broken-power-law function can fit the pho-

tospheric velocity evolution well for all four SNe until a
month after explosion (see the small residuals at the bot-
tom panel of Figure 6 and the reduced χ2 given in Table
2). This function also has the potential to fit the photo-
spheric velocity evolution of most other SNe Ia as well,

given that most SNe Ia have very similar velocity evolu-
tion (e.g., Silverman et al. 2012b, 2012c). High-cadence
spectroscopy is required to verify this, especially at early
times. However, currently it remains unclear whether
there is a good physical explanation behind the fitting;
Piro & Nakar (2013) show that the photospheric veloc-
ity could decay as a power law at early times, but our
broken-power-law function fitting extends to a much later
time.

3.3. Classification

We use the SuperNova IDentification code (SNID;
Blondin & Tonry 2007) to spectroscopically classify
SN 2016coj. For nearly all of the spectra presented
here, we find that SN 2016coj is spectroscopically sim-
ilar to many normal SNe Ia. Compared to SN 1992A
(MB = −18.79mag and ∆m15(B) = 1.47mag; Della
Valle et al. 1998) and SN 2002er (MB = −19.35mag and
∆m15(B) = 1.33mag; Pignata et al. 2004), for example,
SN 2016coj has similar spectra, absolute magnitude, and
∆m15(B). Another spectroscopic comparison is the so-
called Si II ratio, ℜ(Si II) (the ratio of Si II λ5972 to Si II
λ6355), defined by Nugent et al. (1995) using the depths
of spectral features and later by Hachinger et al. (2006)
using their pseudo-equivalent widths. Hachinger et al.
(2006) found a good correlation between the ℜ(Si II) and
∆m15(B) (see their Figure 13). We measure SN 2016coj
to have ℜ(Si II) = 0.11±0.4, with ∆m15(B) = 1.25mag,
placing SN 2016coj in the normal SN Ia region in Figure
13 of Hachinger et al. (2006), very close to SN 2002er.
Thus, we conclude that SN 2016coj is a spectroscopically
normal SN Ia, consistent with the photometric analysis
given in §3.1.

3.4. Spectropolarimetry

3.4.1. Interstellar and Instrumental Polarization

The interstellar polarization (ISP) appears to be low
in the direction of SN 2016coj. Indeed, the estimated
value of E(B − V ) = 0.02mag indicates that the ex-
tinction from the Milky Way and host galaxy are not
substantial; a small contribution from ISP is thus to
be expected. According to Serkowski et al. (1975),
an upper limit to the ISP is given by 9 × E(B − V ),
which implies PISP < 0.18% for SN 2016coj. To ob-
tain a direct estimate of the Galactic component of ISP,
we observed three Galactic stars in the vicinity of the
SN position: HD104436 (A3V), HD106998 (A5V), and
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TABLE 2
Photospheric Velocity Fitting Results

α a α1 α2 reduced χ2

SN power law lineara broken power lawb

SN 2009ig -0.16±0.04 -32±31 -0.20±0.14 0.03±0.23 0.04
SN 2012cg -0.28±0.05 -77±32 -0.39±0.18 -0.09±0.08 0.04
SN 2013dy -0.22±0.03 -54±32 -0.34±0.16 -0.11±0.06 0.14
SN 2016coj -0.18±0.01 -95±3 -0.23±0.01 -0.11±0.01 1.72

a In units of km s−1 d−1.
b The smoothing parameter s was fixed to −10 during fitting, and the very
small reduced χ2 for some SNe is largely caused by overestimating the velocity
uncertainty.

Fig. 7.— Four epochs of spectropolarimetry of SN 2016coj. Top
panel: observed total-flux spectrum, color coded for each epoch.
Middle panel: Debiased polarization (P ), with several major fea-
tures labeled. Bottom panel: Position angle (θ) for the correspond-
ing epochs. θ is underdetermined where P/σP > 1.5; those points
are omitted.

HD108907 (M3 III). We measure respective V -band po-
larization and θ values of P = (0.12%, 0.09%, 0.09%) and
θ = (36◦, 34◦, 30◦). Under the reasonable assumption of
low intrinsic polarization for these stars, the resulting av-
erage values of P ≈ 0.1%, θ ≈ 33◦ confirm the low Galac-
tic polarization. Furthermore, the lack of Na I D absorp-
tion lines in our low- and high-resolution spectra (see
§3.2 and §3.5) indicates low extinction from the early-

type host galaxy, and thus implies that the host ISP is
probably even lower than the small Galactic value.
The instrumental polarization of the Kast instrument

is also low. Measurements of the low-polarization stan-
dard star BD+332642 at each epoch indicate an average
V -band polarization of ∼ 0.15%, with a standard de-
viation of 0.05% between all four epochs; the average
value is consistent with that reported by Schmidt et al.
(1992) for this star, which indicates that the low level
is intrinsic to the source and that Kast contributes an
insignificant amount of instrumental polarization to the
measurements. The standard deviation is near the sys-
tematic uncertainty level we typically experience using
the spectropolarimetry mode of Kast. Our observations
therefore constrain the average instrumental polarization
to < 0.05%. Based on the low values of ISP and instru-
mental polarization, we move forward without attempt-
ing to subtract their minor contributions from the data.

3.4.2. Intrinsic Polarization

Our spectropolarimetry results are shown in Figure 7
and the integrated broadband measurements are listed
in Table 3. On day 6.9, the source exhibits weak polar-
ization in the continuum at a level of ∼ 0.3%, integrated
over the wavelength range 6700–7150Å. This is consis-
tent with the weak levels of continuum polarization that
are typically associated with SNe Ia (Wang & Wheeler
2008), although we note that some fraction of the po-
larization, perhaps half, could potentially be contributed
by ISP. Strong polarization is exhibited across prominent
line features, particularly Si II λ6355 and the Ca II NIR
triplet, at levels of ∼ 0.9% and ∼ 0.6%, respectively. The
Ca II polarization feature appears to exhibit two peaks,
perhaps associated with the high- and low-velocity com-
ponents. The position angles across the polarized line
features, particularly Si II, are close to that of the con-
tinuum, which suggests an axisymmetric configuration
for the SN.
By day 16.0, the continuum polarization is consistent

with having no change relative to day 6.9, while Si II has
increased in strength slightly to peak at this epoch. A
Gaussian fit to the Si II feature indicates a line polariza-
tion of 0.9±0.1%with respect to the continuum level. For
Ca II polarization, the enhancement of the high-velocity
component from day 6.9 has disappeared and the peak of
the lower-velocity component has increased by ∼ 0.3%.
By day 24.0, the continuum and Si II line polarization

appears to have dropped substantially for wavelengths
shortward of 7000 Å, with no significant change appar-
ent at longer wavelengths; polarization in the continuum
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TABLE 3
Polarization of SN 2016coj

Epoch PV
a(%) θV (deg) Pcont θcont(deg)

6.9 0.27(0.01) 54.3(0.8) 0.51(0.01) 55.4(0.9)
16.0 0.20(0.01) 52.6(0.8) 0.38(0.01) 53.4(0.8)
24.0 0.16(0.01) 39.2(1.6) 0.06(0.02) 09.0(4.3)
44.0 0.39(0.04) 41.0(1.3) 0.28(0.03) 30.0(2.2)

aV -band and continuum integrated over wavelength ranges of
5050–5950 Å and 6700–7150 Å, respectively. Uncertainties are sta-
tistical.

region is undetected at this epoch. If real, such a contin-
uum polarization drop roughly one week after peak would
be reminiscent of the evolution of SN2001el (Wang et al.
2003). However, by day 44.0 the continuum polariza-
tion appears to have regained the strength exhibited on
day 16.0 and earlier. Si II has restrengthened as well,
while declining in radial velocity along with the mini-
mum of the weakening absorption profile. Based on this
unexpected restrengthening, we exercise caution regard-
ing the temporarily weakened polarization on day 24.0,
as we are concerned that this could be the result of a
systematic error. The drop in polarization appears to
have only affected the Stokes q parameter (derived from
exposures with polarimeter waveplate angles at 0◦ and
45◦). Each of our three q sequences of the SN are consis-
tent, and we see no such change in the q parameter of our
standard-star observations from the same night. Thus, if
the change on day 24.0 is the result of systematic error
(e.g., some unknown temporary source of instrumental
polarization above our typical limit of < 0.05%), then it
must have occurred over an hourly timescale. Alterna-
tively, a subsequent rise in continuum polarization on day
44.0 could result from the appearance of weak line fea-
tures in the our chosen continuum region (6700–7150Å),
but in this case we would not expect the simultaneous rise
in the Si II feature. As a final possibility, the temporary
influence of a separate light-echo component, possibly as-
sociated with dust in the host ISM, could result in the
observed fluctuation; this possibility has the advantage
of accounting for the brief change in the continuum and
line polarization simultaneously, and it would also ex-
plain why the reddest wavelengths are not significantly
affected.
Overall, the spectropolarimetric character of

SN2016coj is consistent with the trends exhibited
by “normal” SNe Ia. For example, Maund et al. (2010)
reported a correlation between the polarization of the
Si II λ6355 feature, measured near or before peak
luminosity, and the radial-velocity decline rate of the
absorption minimum (also see Leonard et al. 2006),
physically interpreted as evidence for a single geometric
configuration for normal SNe Ia. At peak brightness on
day 16.0, the line polarization of 0.9 ± 0.1% combined
with our measured value of −95km s−1 day−1 for the
velocity evolution, shows that SN 2016coj falls where
expected on the correlated distribution of SNe Ia
reported by Maund et al. (2010), and within the range
of high-velocity explosions.

3.5. High-Resolution Spectra

We examine the APF high-resolution spectra for nar-
row absorption features, such as those that were identi-

fied in APF spectra of SN 2014J (Graham et al. 2015).
We began spectral monitoring with the APF based on an
early classification and the assumption of a host-galaxy
distance smaller than that adopted here. The object’s
peak apparent brightness ended up being ∼ 3mag fainter
than that of SN2014J, and fainter than the projected
minimum we typically require for triggering the APF. For
this reason, the S/N of our SN2016coj APF spectra is
quite low. Instead of ceasing our APF monitoring we ob-
tained multiple observations over several nights in order
to stack our spectra, but ultimately we do not identify
any absorption features of Na I D λλ5889.95, 5895.92,
Ca II H&K λλ3933.7, 3968.5, K I λλ7664.90, 7698.96,
Hα λ6562.801, Hβ λ4861.363, or the diffuse interstellar
bands (λ ≈ 5780, 5797, 6196, 6283, 6613 Å).
Since the Na I D feature is most useful for constraining

the presence of circumstellar material and line-of-sight
host-galaxy dust extinction, and owing to grating blaze
is in a region of relatively higher S/N (∼ 10), we estimate
an upper limit on itsWλ in the following way. The flux of
the continuum-normalized stacked APF spectra in the re-
gion of Na I D, shown in black in Figure 8, has a standard
deviation of σ ≈ 0.038. As an upper limit on the depth
of an absorption feature that we could have detected,
we use 3σ ≈ 0.11. Our instrumental configuration for
the Levy spectrograph results in a spectral resolution of
∆λ ≈ 0.03 Å, from which we estimate that the minimum
FWHM of a detected feature is 3∆λ ≈ 0.1 Å. Assum-
ing a Gaussian profile for this hypothetical absorption,
we constrain the Na I D feature to have Wλ . 0.56 Å.
Based on Figure 9 of Phillips et al. (2013), this puts an
upper limit on host-galaxy extinction of AV . 0.2mag
(with E(B − V ) = 0.07mag assuming RV = 3.1). Al-
though this is a rather large upper limit, it is consistent
with the small host-galaxy extinction constrained from
our low-resolution spectra (see §3.2) and also with the
low extinction expected given the early type of the host,
NGC 4125.

4. CONCLUSIONS

In this paper we have presented optical photomet-
ric, low- and high-resolution spectroscopic, and spec-
tropolarimetric observations of SN 2016coj, one of the
youngest discovered and best-observed SNe Ia. Our
clear-band light curve shows that our first detection is
merely 0.6±0.5d after the fitted time of first light, mak-
ing it one of the earliest detected SNe Ia. We estimate
that SN 2016coj took ∼ 16.0 d after the fitted first-light
time to reach B-band maximum. Its maximum bright-
ness has a normal luminosity, B = −18.9± 0.2mag. An
estimated ∆m15(B) value of 1.25mag along with spec-
tral information support its normal SN Ia classification.
In the well-observed low-resolution spectral sequence, we
identify a high-velocity feature from both Ca II H&K
and the Ca II NIR triplet, and also possibly from the
O I triplet. SN 2016coj has a Si II λ6355 velocity
of ∼ 12, 600km s−1 at peak brightness, ∼ 1500km s−1

higher than that of typical SNe Ia. We find that the
Si II λ6355 velocity decreases rapidly during the first
few days and then slowly decreases after peak brightness,
very similar to that of other SNe Ia. A broken-power-law
function can well fit the Si II λ6355 velocity for up to
about a month after first light. We estimate there to be
very small host-galaxy extinction based on the lack of
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Fig. 8.— High-resolution spectra of SN 2016coj in the region of Na I D absorption from the APF obtained at four epochs (2016-05-31,
blue; 2016-06-02, green; 2016-06-04, orange; 2016-06-06, red). The bottom (black) shows the stacked spectrum from the data of these
epochs. A mean barycentric velocity of ∼ 15 km s−1 has been applied for all epochs of SN 2016coj spectra. The atmospheric absorption
lines are shown in gray, which has been redshifted into the frame of SN 2016coj. The most significant features are highlighted with vertical
bars in order to identify their presence in the spectra of SN 2016coj. A rest-frame velocity scale bar is provided for each Na I D feature
along the top of the plot.

Na I D lines from the host galaxy in our low- and high-
resolution spectra. Our four epochs of spectropolarime-
try show that SN 2016coj exhibits weak polarization in
the continuum, but the Si II line polarization is quite
strong (∼ 0.9± 0.1%) at peak brightness.
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