176 research outputs found

    Combined Gamma Ray/neutron Spectroscopy for Mapping Lunar Resources

    Get PDF
    Some elements in the Moon can be resources, such as hydrogen and oxygen. Other elements, like Ti or the minerals in which they occur, such as ilmenite, could be used in processing lunar materials. Certain elements can also be used as tracers for other elements or lunar processes, such as hydrogen for mature regoliths with other solar-wind-implanted elements like helium, carbon, and nitrogen. A complete knowledge of the elemental composition of a lunar region is desirable both in identifying lunar resources and in lunar geochemical studies, which also helps in identifying and using lunar resources. The use of gamma ray and neutron spectroscopy together to determine abundances of many elements in the top few tens of centimeters of the lunar surface is discussed. To date, very few discussions of elemental mapping of planetary surfaces considered measurements of both gamma rays and the full range of neutron energies. The theories for gamma ray and neutron spectroscopy of the Moon and calculations of leakage fluxes are presented here with emphasis on why combined gamma ray/neutron spectroscopy is much more powerful than measuring either radiation alone

    On the possible space-time fractality of the emitting source

    Get PDF
    Using simple space-time implementation of the random cascade model we investigate numerically a conjecture made some time ago which was joining the intermittent behaviour of spectra of emitted particles with the possible fractal structure of the emitting source. We demonstrate that such details are seen, as expected, in the Bose-Einstein correlations between identical particles. \\Comment: Thoroughly rewritten and modify version, to be published in Phys. Rev.

    Al-26 production profile and model comparisons in Canyon Diablo

    Get PDF
    The large preatmospheric size of the Canyon Diablo meteorite, a radius of about 15 m, makes it especially suitable for systematic studies of cosmogenic nuclide production rates of iron objects in a 2 pi geometry. To reconstruct the exposure history of the meteoroid, Heymann et al. investigated several fragments recovered from known geographic locations around the crater for their shock features and cosmogenic nobel gases. They applied the Signer-Nier noble gas production rate model to establish the preatmospheric depth of the specimens in the meteoroid. Cosmic ray exposure ages suggested a multi-episodic irradiation, with 170 or 540 Ma being inferred for most of the samples studied while two anomalous specimens indicated a possible third exposure age at 940 Ma. Be-10 and Cl-36 have been measured in a number of these same samples by accelerator mass spectrometry (AMS), with use being made of the preatmospheric depths determined in Heymann et al. to construct production profiles. The present study extends the cosmogenic radionuclide data to Al-26 and compares the results with both the production rate model of Reedy and Arnold and production rates determined from the cross sections used by the Reedy-Arnold model (for the major nuclear reactions making Al-26) in combination with differential fluxes calculated using the Los Alamos High Energy Transport (LAHET) Code System. Model calculations for Be-10 and Cl-36 have also been obtained

    mRNA Subtype of Cancer-Associated Fibroblasts Significantly Affects Key Characteristics of Head and Neck Cancer Cells

    Get PDF
    Head and neck squamous cell carcinomas (HNSCC) belong among severe and highly complex malignant diseases showing a high level of heterogeneity and consequently also a variance in therapeutic response, regardless of clinical stage. Our study implies that the progression of HNSCC may be supported by cancer-associated fibroblasts (CAFs) in the tumour microenvironment (TME) and the heterogeneity of this disease may lie in the level of cooperation between CAFs and epithelial cancer cells, as communication between CAFs and epithelial cancer cells seems to be a key factor for the sustained growth of the tumour mass. In this study, we investigated how CAFs derived from tumours of different mRNA subtypes influence the proliferation of cancer cells and their metabolic and biomechanical reprogramming. We also investigated the clinicopathological significance of the expression of these metabolism-related genes in tissue samples of HNSCC patients to identify a possible gene signature typical for HNSCC progression. We found that the right kind of cooperation between cancer cells and CAFs is needed for tumour growth and progression, and only specific mRNA subtypes can support the growth of primary cancer cells or metastases. Specifically, during coculture, cancer cell colony supporting effect and effect of CAFs on cell stiffness of cancer cells are driven by the mRNA subtype of the tumour from which the CAFs are derived. The degree of colony-forming support is reflected in cancer cell glycolysis levels and lactate shuttle-related transporters

    Atmospheric 81Kr as an integrator of cosmic-ray flux on the hundred-thousand-year timescale

    Get PDF
    The atmospheric abundance of 81Kr is a global integrator of cosmic rays. It is insensitive to climate shifts, geographical variations, and short-term solar cycle activity, making it an ideal standard to test models of cosmic-ray flux on the time scale of 105 years. Here we present the first calculation of absolute 81Kr production rates in the atmosphere, and a measurement of the atmospheric 81Kr/Kr abundance via the Atom Trap Trace Analysis method. The measurement result significantly deviates from previously reported values. The agreement between measurement and model prediction supports the current understanding of the production mechanisms. Additionally, the calculated 81Kr atmospheric inventory over the past 1.5 Myr provides a more accurate input function for radiokrypton dating

    Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records

    Get PDF
    The most powerful explosions on the Sun [...] drive the most severe space-weather storms. Proxy records of flare energies based on SEPs in principle may offer the longest time base to study infrequent large events. We conclude that one suggested proxy, nitrate concentrations in polar ice cores, does not map reliably to SEP events. Concentrations of select radionuclides measured in natural archives may prove useful in extending the time interval of direct observations up to ten millennia, but as their calibration to solar flare fluences depends on multiple poorly known properties and processes, these proxies cannot presently be used to help determine the flare energy frequency distribution. Being thus limited to the use of direct flare observations, we evaluate the probabilities of large-energy solar explosions by combining solar flare observations with an ensemble of stellar flare observations. We conclude that solar flare energies form a relatively smooth distribution from small events to large flares, while flares on magnetically-active, young Sun-like stars have energies and frequencies markedly in excess of strong solar flares, even after an empirical scaling with the mean activity level of these stars. In order to empirically quantify the frequency of uncommonly large solar flares extensive surveys of stars of near-solar age need to be obtained, such as is feasible with the Kepler satellite. Because the likelihood of flares larger than approximately X30 remains empirically unconstrained, we present indirect arguments, based on records of sunspots and on statistical arguments, that solar flares in the past four centuries have likely not substantially exceeded the level of the largest flares observed in the space era, and that there is at most about a 10% chance of a flare larger than about X30 in the next 30 years.Comment: 14 pages, 3 figures (in press as of 2012/06/18); Journal of Geophysical Research (Space Physics), 201

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail

    A new Holocene eruptive history of Erebus volcano, Antarctica using cosmogenic 3He and 36Cl exposure ages

    Get PDF
    AbstractThe ages of recent effusive eruptions on Erebus volcano, Antarctica are poorly known. Published 40Ar/39Ar ages of the 10 youngest “post-caldera” lava flows are unreliable because of the young ages of the flows (<10 ka) and the presence of excess 40Ar. Here we use cosmogenic 3He and 36Cl to provide new ages for the 10 youngest flows and 3 older summit flows, including a newly recognized flow distinguished by its exposure age. Estimated eruption ages of the post-caldera flows, assuming no erosion or prior snow cover, range from 4.52 ± 0.08 ka to 8.50 ± 0.19 ka, using Lifton et al. (2014) to scale cosmogenic production rates. If the older Lal (1991)/Stone (2000) model is used to scale production rates, calculated ages are older by 16–25%. Helium-3 and chlorine-36 exposure ages measured on the same samples show excellent agreement. Helium-3 ages measured on clinopyroxene and olivine from the same samples are discordant, probably due in part to lower-than-expected 3He production rates in the Fe-rich olivine. Close agreement of multiple clinopyroxene 3He ages from each flow indicates that the effects of past snow coverage on the exposure ages have been minimal.The new cosmogenic ages differ considerably from published 40Ar/39Ar and 36Cl ages and reveal that the post-caldera flows were erupted during relatively brief periods of effusive activity spread over an interval of ∼4 ka. The average eruption rate over this interval is estimated to be 0.01 km3/ka. Because the last eruption was at least 4 ka ago, and the longest repose interval between the 10 youngest eruptions is ∼1 ka, we consider the most recent period of effusive activity to have ended

    A Millennium Scale Sunspot Number Reconstruction: Evidence For an Unusually Active Sun Since the 1940's

    Full text link
    The extension of the sunspot number series backward in time is of considerable interest for dynamo theory, solar, stellar, and climate research. We have used records of the Be-10 concentration in polar ice to reconstruct the average sunspot activity level for the period between the year 850 to the pr esent. Our method uses physical models for processes connecting the Be-10 concentration with the sunspot number. The reconstruction shows reliably that the period of high solar activity during the last 60 years is unique throughout the past 1150 years. This nearly triples the time interval for which such a statement could be made previouslyComment: 4 pages, LaTeX, revtex4 macros; Phys. Rev. Let., in pres
    corecore