6 research outputs found
Model repair and transformation with Echo
Models are paramount in model-driven engineering. In a software project many models may coexist, capturing different views of the system or different levels of abstraction. A key and arduous task in this development method is to keep all such models consistent, both with their meta-models (and the respective constraints) and among themselves. This paper describes Echo, a tool that aims at simplifying this task by automating inconsistency detection and repair using a solver based engine. Consistency between different models can be specified by bidirectional model transformations, and is guaranteed to be recovered by minimal updates on the inconsistent models. The tool is freely available as an Eclipse plugin, developed on top of the popular EMF framework, and supports constraints and transformations specified in the OMG standard languages OCL and QVT-R, respectively.This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by national funds through the FCT - Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-020532. The first author is also sponsored by FCT grant SFRH/BD/69585/2010
Exploring scenario exploration
Model finders are very popular for exploring scenarios, helping users validate specifications by navigating through conforming model instances. To be practical, the semantics of such scenario exploration operations should be formally defined and, ideally, controlled by the users, so that they are able to quickly reach interesting scenarios. This paper explores the landscape of scenario exploration operations, by formalizing them with a relational model finder. Several scenario exploration operations provided by existing tools are formalized, and new ones are proposed, namely to allow the user to easily explore very similar (or different) scenarios, by attaching preferences to model elements. As a proof-of-concept, such operations were implemented in the popular Alloy Analyzer, further increasing its usefulness for (user-guided) scenario exploration.North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), within project NORTE-07-0124-FEDER-000062
Composing least-change lenses
Non-trivial bidirectional transformations (BXs) are inherently ambiguous, as there are in general many different ways to consistently translate an update from one side to the other. Existing BX languages and frameworks typically satisfy fundamental first principles which ensure acceptable and stable (well-behaved) translation. Unfortunately, these give little insight about how a particular update translation is chosen among the myriad possible. From the user perspective, such unpredictability may hinder the adoption of BX frameworks.
The problem can be remedied by imposing a “principle of least change” which, in a state-based framework, amounts to translating each update in a way such that its result is as close as possible to the original state, according to some distance measure.
Starting by formalizing such BXs focusing on the particular framework of lenses, this paper discusses whether such least-change lenses can be defined by composition, an essential construct of BX frameworks. For sequential composition, two (dual) update translation alternatives are presented: a classical deterministic one and a nondeterministic. A key ingredient of the approach is the elegant formalization of the main concepts in relation algebra, which exposes several similarities and dualities.(undefined
Bidirectional spreadsheet formulas
Bidirectional transformations have potential applications in a vast number of computer science domains. Spreadsheets, on the other hand, are widely used for developing business applications, but their formulas are unidirectional, in the sense that their result can not be edited and propagated back to their input cells. In this paper, we interpret such formulas as a well-known class of bidirectional transformations that go by the name of lenses. Being aimed at users that are not proficient with programming languages, we devote particular attention to the seamless embedding of the proposed bidirectional mechanism with the typical workflow of spreadsheet environments, allowing users to have a fine control and understanding of the behavior of the derived backward transformations
Characterisation of microbial attack on archaeological bone
As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved