
Model Repair and Transformation with Echo
Nuno Macedo, Tiago Guimarães, Alcino Cunha

HASLAB — High Assurance Software Laboratory
INESC TEC & Universidade do Minho, Braga, Portugal

{nfmmacedo,tguimaraes,alcino}@di.uminho.pt

Abstract—Models are paramount in model-driven engineering.
In a software project many models may coexist, capturing
different views of the system or different levels of abstraction.
A key and arduous task in this development method is to keep
all such models consistent, both with their meta-models (and
the respective constraints) and among themselves. This paper
describes Echo, a tool that aims at simplifying this task by au-
tomating inconsistency detection and repair using a solver based
engine. Consistency between different models can be specified
by bidirectional model transformations, and is guaranteed to be
recovered by minimal updates on the inconsistent models. The
tool is freely available as an Eclipse plugin, developed on top
of the popular EMF framework, and supports constraints and
transformations specified in the OMG standard languages OCL
and QVT-R, respectively.

I. INTRODUCTION

Model-Driven Engineering (MDE) is an approach to soft-
ware development that focuses on models as the primary
development artifact. In MDE, different models, conforming to
different meta-models, capture different views of the same sys-
tem (typically different models are used to specify structural
and dynamic features) or may be used at different levels of
abstraction (code is obtained by refining platform-independent
models to platform-specific ones).

During the development process, user updates will un-
doubtedly produce inconsistencies which must eventually be
repaired. Manually performing such repairs is in most cases
unfeasible, due to model size and the complexity of meta-
model constraints and inter-model consistency rules. Tool
support for this task is essential, to automate as much as
possible model repair and update propagation from one model
to the remaining, to recover consistency. In order to be
effective and predictable, such repairs cannot simply generate
new consistent models from scratch, but must instead produce
models that are as close as possible to the original ones.

To support MDE, the Object Management Group (OMG)
has launched the Model-Driven Architecture (MDA) initiative,
which prescribed the usage of the Meta-Object Facility (MOF)
and Object Constraint Language (OCL) for the specification
of (object oriented) meta-models and constraints over them.
To specify inter-model consistency, the OMG prescribed the
usage of bidirectional model transformations, and proposed the
Query/View/Transformation Relations (QVT-R) [1] declarative
language to specify them. Unlike MOF and OCL, QVT-R has
yet to be widely accepted, much due to the unpredictable
and ambiguous semantic defined in the standard, which has
hindered effective tool development.

Inconsistencies can be repaired by two main techniques.
One is to derive repair plans by syntactic analysis of the
constraints and model instances. The other is through model
finding, by using a solver to calculate a new model that
satisfies the constraints. While the former is usually more
efficient and scales better, it is less expressive and flexible
than the latter. For example, it is not as well suited to deal
with multiple inconsistencies, nor inconsistencies that affect a
large portion of the model (likely to occur when using closures
to express reachability properties). Moreover, they usually rely
on a fixed set of abstract edit operations to specify the repairs,
which the user must manually instantiate and is not able to
parametrize. Most existing intra-model repair tools [2]–[4]
fall into the first class of repair techniques. To achieve high
efficiency, they typically limit the expressiveness of repair
updates, do not require the generation of fully consistent
models, or require constraints to be manually annotated with
inconsistency resolution hints. The few existing tools based on
model finding [5], [6] do not abide to the desirable principle of
least-change [7], that requires repaired models to be as close
as possible to the original. Effective support for inter-model
consistency repair (namely via bidirectional QVT-R transfor-
mations) is even scarcer. Most tools plainly ignore meta-model
constraints and may output inconsistent models [8]–[10], or are
not bidirectional, allowing only the creation of fresh consistent
models, ignoring the existing (inconsistent) ones.

This paper presents Echo, a tool for model repair and
transformation based on model finding. While less scalable
that some of the existing tools, Echo is: more expressive,
allowing the annotation of meta-models with rich OCL con-
straints and the specification of QVT-R bidirectional model
transformations; more flexible, being able to check and repair
both intra- and inter-model consistency, and providing control
over repairs by letting the user specify the allowed edit
operations; correct, in the sense that resulting models are
always fully consistent; and minimal, in the sense that it
follows the clear and predictable principle of least-change.

Echo is deployed as an Eclipse plugin, developed on top
of the popular Eclipse Modeling Framework (EMF), with
meta-models being specified in ECore with embedded OCL
constraints. Its engine works by translating both meta-models
(annotated with OCL) and QVT-R transformations to Al-
loy [11], a lightweight formal specification language with
support for automatic model finding via SAT solving. Even
with such model finding approach, Echo is already effective
at handling realistic medium sized models, and is particularly

978-1-4799-0215-6/13

c� 2013 IEEE

ASE 2013, Palo Alto, USA

Tool Demonstrations

Accepted for publication by IEEE.

c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

694

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Class diagrams of the UML and RDBMS meta-models.

useful for exploring and debugging meta-model constraints
and inter-model consistency rules. In particular, it already
helped us unveil several errors in the well-known object-
relational mapping that illustrates the QVT-R standard [12].

II. THE ECHO FRAMEWORK

Echo’s environment consists of a set of meta-models
with internal constraints (A,B,C, . . . ) and a set of QVT-R
bidirectional transformations (R,S, T, . . . ) that specify inter-
model consistency. The focus of the tool is to help manage
the evolution of a set of models (a, b, c, . . . ), keeping them
consistent with the respective meta-models (the fact that a
conforms to all the constraints of A will be denoted by a :: A)
and the inter-model consistency rules specified in the QVT-R
transformations (the fact that a and b are R-consistent will be
denoted by (a, b) :: R). Two models can be kept consistent by
multiple QVT-R transformations simultaneously, and the same
transformation can relate multiple pairs of models.

Echo was designed to be used in an online setting, in the
sense that the consistency tests are automatically applied as the
user is editing the models, flagging faulty models whenever
inconsistencies are found. The user can then ask the tool to
repair the models – Echo produces repairs that follow the
principle of least change, so that the suggested repaired models
will be as close as possible to the original inconsistent ones.
This process is inherently non-deterministic, as there may be
more than one consistent model at minimal distance. Echo
presents all possible repaired models by increasing distance,
allowing the user to choose the desired one, at which time the
update is effectively applied to the original model.

As a running example, we rely on a simplified version of
the classic object-relational mapping transformation that illus-
trates the QVT-R specification [1]. Fig. 1 depicts a simplified
version of the object and relational meta-models, including
possible edit operations. Over those meta-models, a QVT-R
transformation Uml2Rdbms is defined, whose goal is to map
every persistent Class in a Package to a Table in a
Scheme with the same name. Each Table should contain a
Column for each Attribute (including inherited ones) of
the corresponding Class. As for Associations, each one
is mapped into a foreign key FKey in the relational scheme.
A constraint of the UML meta-model that cannot be captured
by class diagrams alone is the requirement that the super

association must be acyclic. One must resort to OCL to express
it, for example by adding the invariant:

Fig. 2. A snapshot of Echo, with RDBMS and UML models depicted in EMF
and in the embedded Alloy visualizer, respectively.

context Class inv:

not self.closure(super)->includes(self)

A pair of (the respective) meta-model and Uml2Rdbms-
consistent instances is depicted in Fig. 2. The class diagram
captures a very simple company model, where there are
Employees and Employers, which are Persons, the for-
mer connected to a Department via an association. Classes
Employee, Employer and Department are flagged as
persistent, hence the relational scheme on the left-hand-side.

A. Features
Echo currently supports the following features:
1) Model Visualization: Models are presented using the

Alloy visualizer, as seen in Fig. 2 where an UML model is
depicted. For better readability, an Alloy theme is automat-
ically inferred from the meta-models. A user-defined theme
can also be provided if desired.

2) Model Generation: Given a meta-model A and user-
specified size, Echo can generate a new model a such that
a :: A. This is useful, for example, in the creation of new
models to kick-start model development: due to meta-model
constraints models may not be allowed to be empty, and Echo
generates the smallest model that satisfies such constraints. It
is also useful to verify meta-model consistency and scenario
exploration, allowing the user to verify if the meta-model can
be inhabited by models satisfying given constraints.

3) Consistency Check: Given a model a, Echo can check if
a :: A. As the models evolve, inconsistencies will indubitably
occur which may break the meta-model implicit and explicit

695



OCL constraints. For instance, imagine the user inserts a
new super association from Person to Employee in the
example of Fig. 2, breaking the OCL constraint specified
above. Echo will immediately flag this model as inconsistent.

4) Model Repair: Given a model a that does not conform
to A, Echo can find a minimal repair that produces an a0

such that a0 :: A. While inconsistencies should temporarily be
tolerated during development, they will eventually need fixing.
Echo can enumerate all repaired models a0 at increasing
distances from a, letting the user choose the desired one.
Proceeding with our example, if Echo is asked to repair the
now inconsistent model it would present two alternatives at
minimal distance: either remove the newly inserted super

association from Person to Employee or remove the pre-
viously existing one from Employee to Person.

5) Inter-model Consistency Check: Given a QVT-R trans-
formation R and models a :: A and b :: B that are supposed
to be consistent via R, Echo can check if (a, b) :: R.
The checking semantics follows exactly that specified in the
QVT standard [1]. For instance, inserting a new Column

Location on the Table Department from Fig. 2 would
flag both models as inconsistent.

6) Inter-model Consistency Repair: QVT-R specifications
are interpreted as bidirectional transformations, and, given a
transformation R and models a :: A and b :: B such that
(a, b) :: R does not hold, Echo is able to repair either a or b
to recover consistency. For example, Echo can find a minimal
repair that produces a b0 such that b0 :: B and (a, b0) :: R.
Once again, the user is able to choose the desired model from
all minimal consistent models. In our running example, Echo
would present a single minimal repair, namely insert a new
Attribute Location in the Class Department.

7) Inter-model Generation: Given a QVT-R transformation
R and a model a :: A, Echo can find the minimal b :: B such
that (a, b) :: R. This is achieved by combining the previously
presented model generation and inter-model consistency re-
covery features: first a b0 that conforms to B is produced,
which is then updated to a b that is R-consistent with a.

B. Implementation
Echo’s engine is built on top of Alloy [11], a lightweight

formal specification language with support for both model
checking and automatic model finding via SAT solving. MDE
artifacts are translated into Alloy, and then we rely on these
features to check consistency and find repairs, respectively.
The technical details of such translations have been presented
in previous work [12], [13]. Alloy also has an instance
visualizer, to which we resort to depict models to the user.

At the core of Echo we have the following translations:
ECore ! Alloy embeds ECore meta-models in Alloy [13];
OCL ! Alloy translates the OCL constraints over the

meta-model to Alloy [13];
XMI $ Alloy translates XMI models to and from Alloy

instances [12];
QVT-R ! Alloy embeds QVT-R transformations, as well

as the underlying semantics, in Alloy [12].

The key component of our tool is a target oriented model
finding procedure, built on top of Alloy’s solver, that finds
minimal updates to an Alloy instance that satisfy a given
set of constraints, details of which can be found in [12].
Essentially, minimal updates are found by asking the solver
to find consistent instances at increasing distances from the
original inconsistent one. Since models can be seen as graphs,
the standard graph edit distance (GED), that just counts
additions and deletions of nodes and edges, can be used to
measure such distance. Echo automatically infers this measure
for any given meta-model. A user-parametrized model distance
measure is also available, that requires the user to specify the
allowed edit operations in the meta-model, enabling a finer
degree of control over valid repairs.

To better discern the impact of the two metrics, consider that
a new Column named salary is inserted in the Employer
Table. The minimal repairs on the UML model according
to GED are either setting Employee as a super-Class
of Employer or moving the Attribute salary from
Employee up to Person. If none of these are desirable
repairs, the user can ask for the next closest solution, which
in this case consists of the introduction of a new Attribute

salary in Employer. Suppose the user wants to rule out all
repairs that change the Class hierarchy or assign the same
cost to either create a new attribute or move an attribute from
one class to another. To do so, he can specify (using OCL)
which are the valid edit operations that can be performed to
repair a model (as depicted in Fig. 1). Notice that there are no
edit operations that modify the hierarchy, and both creation and
moving of an attribute are now atomic edit operations. In this
case, the Echo engine tries to find the minimal sequence of
edit operations that repairs the model. In our running example,
there will now be two minimal repairs, namely insert the new
Attribute salary in Employer, or moving the existing
one from Employee to the common super-Class Person.

C. Deployment
Echo is deployed as an Eclipse plugin1, developed in

accordance to the EMF. It resorts to the Model Development
Tools (MDT) and Model-to-Model Transformation (MMT)
components to parse the OCL constraints and QVT-R spec-
ifications, respectively. EMF prescribes ECore for the speci-
fication of meta-models, while model instances are presented
as XMI objects. To enhance the meta-models with additional
constraints, we follow the technique proposed by MDT, of
embedding the OCL constraints as meta-model annotations.

The plugin automates the features described in Section II-A
according to the architecture described in the previous sec-
tion. Thus, every time the user updates a model, the system
automatically checks its consistency in relation to the other
artifacts. If a model is flagged as inconsistent, the user can
then ask Echo to repair it. The user is then able to iterate
through the minimal repaired models and choose the desired
one through the interface presented in Fig. 2.

1Download and more information about Echo available at http://haslab.
github.io/echo/, including a video demonstrating the tool being used.

696



III. RELATED WORK

As discussed in Section I, due to scalability issues, most
existing model repair tools use some kind of syntactic analysis
to generate repair plans. For example, xlinkit [14] derives all
possible sequences of repair actions for elements breaking a
model constraint. However, it only considers one inconsistency
at a time, not taking into consideration possible negative side-
effects. To alleviate this problem, Model/Analyzer [2] uses an
efficient incremental consistency checker to withdraw repair
operations that have negative side-effects, yielding more re-
fined repair plans, presented as a repair tree. Badger [3], a tool
built with Praxis (a Prolog-based toolset of model-independent
Eclipse plugins to generate and check model consistency),
generates repair plans using automated regression planning,
given concrete, previously detected, inconsistencies. The order
in which repair plans are suggested can be controlled by
the user by assigning different costs to edit operations. The
main problem of all these tools is that repair plans consist
of sequences of abstract edit operations, which the user must
instantiate in order to effectively repair the models. Instead,
Echo can compute such repaired models automatically.

Very few model repair tools rely on solvers and model
finders, and no existing tools abide to the principle of least-
change, meaning that repaired models are not guaranteed to
be as close as possible to the original. For example, in [5]
the inconsistent model is just used as a lower bound during
solving, meaning that the repairs can only be performed by
adding new nodes and edges to the model graph. In [6] a
repaired model is found by relaxing the bounds on some
entities and associations: nodes and edges suspected of causing
the inconsistencies are removed from the lower-bound, and the
upper-bound is augmented to allow additions. Such potentially
guilty model elements must be identified by an (unspecified)
external tool, and again there are no guarantees the repairs will
be minimal. Unlike Echo, none of these tools allow control
over repairs via parametrized edit operations. [15] describes
a technique for generating quick fixes for DSMLs using the
CSP(M) solver. The technique guarantees that the number
of inconsistencies on the model decreases, even if side-
effects occur. This is achieved by applying every candidate
fix to the inconsistent model and detecting and counting the
inconsistencies in the resulting model.

A different approach is implemented in the Beanbag lan-
guage [4]: together with the specification of consistency rules,
this language allows the user (with a small overhead) to specify
how models breaking such rules should be fixed. Rules can
then be run either in checking or fixing mode to repair models.

Regarding tool support for QVT-R, ModelMorf [8] and
Medini [9] are the main existing functional tools. Medini is an
Eclipse plugin for a subset of the QVT-R language. Although
popular, its (not formally specified) semantics admittedly dis-
regards the semantics from the QVT standard (it does not sup-
port the checkonly mode for instance). ModelMorf allegedly
follows the QVT standard more closely (although, once again,
the exact semantics is unknown), since its development team

was involved in the specification of the standard. However, the
development of the tool seems to have stopped.

Like Echo, the JTL tool [10] is solver based, although
it does not support QVT-R, but rather a restricted QVT-like
language. Repaired models are generated by resorting to the
DLV solver, which is able to retrieve information from the
original inconsistent model. However, it is not clear how the
repaired model is generated, namely how the solver chooses
which model elements to retain. It also forces the totality of
the transformation, returning inconsistent models in the case
that there is no consistent one. Unlike Echo, it does not
allow for user-parametrized edit operations to control repairs.
Some other prototype tools for QVT-R exist, but they are not
bidirectional, in the sense that they only allow the execution
of the transformation in one direction when generating new
fresh models, completely ignoring the previously existing
inconsistent ones. No existing QVT-R tools have support for
OCL constraints on the meta-models, meaning that repaired
models may be inconsistent.

ACKNOWLEDGMENTS

This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (opera-
tional programme for competitiveness) and by national funds
through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124-FEDER-020532. The first author is
also sponsored by FCT grant SFRH/BD/69585/2010.

REFERENCES

[1] OMG, “MOF 2.0 Query/View/Transformation specification (QVT), ver-
sion 1.1,” January 2011, http://www.omg.org/spec/QVT/1.1/.

[2] A. Reder and A. Egyed, “Computing repair trees for resolving incon-
sistencies in design models,” in ASE. ACM, 2012, pp. 220–229.

[3] J. Puissant, R. Straeten, and T. Mens, “Resolving model inconsistencies
using automated regression planning,” SoSyM, pp. 1–21, 2013.

[4] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei,
“Supporting automatic model inconsistency fixing,” in FSE. ACM,
2009, pp. 315–324.

[5] M. Kleiner, M. Fabro, and P. Albert, “Model search: Formalizing and
automating constraint solving in MDE platforms,” in ECMFA, ser.
LNCS, vol. 6138. Springer, 2010, pp. 173–188.

[6] R. Straeten, J. Puissant, and T. Mens, “Assessing the Kodkod model
finder for resolving model inconsistencies,” in ECMFA, ser. LNCS, vol.
6698. Springer, 2011, pp. 69–84.

[7] L. Meertens, “Designing constraint maintainers for user interaction,”
1998, available at http://www.kestrel.edu/home/people/meertens.

[8] Tata Research Development and Design Centre, “ModelMorf,” http://
www.tcs-trddc.com/trddc website/ModelMorf/ModelMorf.htm.

[9] ikv++ technologies ag, “Medini QVT,” http://projects.ikv.de/qvt/.
[10] A. Cicchetti, D. Ruscio, R. Eramo, and A. Pierantonio, “JTL: a bidi-

rectional and change propagating transformation language,” in SLE, ser.
LNCS, vol. 6563. Springer, 2010, pp. 183–202.

[11] D. Jackson, Software Abstractions: Logic, Language, and Analysis,
revised ed. MIT Press, 2012.

[12] N. Macedo and A. Cunha, “Implementing QVT-R bidirectional model
transformations using Alloy,” in FASE, ser. LNCS, vol. 7793. Springer,
2013, pp. 297 – 311.

[13] A. Cunha, A. Garis, and D. Riesco, “Translating between Alloy speci-
fications and UML class diagrams annotated with OCL,” SoSyM, 2013.

[14] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency manage-
ment with repair actions,” in ICSE. IEEE, 2003, pp. 455–464.

[15] Á. Hegedüs, Á. Horváth, I. Ráth, M. Branco, and D. Varró, “Quick fix
generation for DSMLs,” in VL/HCC. IEEE, 2011, pp. 17–24.

697


