161 research outputs found

    Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation

    Full text link
    Terahertz (THz) radiation can be generated by ultrafast photo-excitation of carriers in a semiconductor partly masked by a gold surface. A simulation of the effect taking into account the diffusion of carriers and the electric field shows that the total net current is approximately zero and cannot account for the THz radiation. Finite element modelling and analytic calculations indicate that the THz emission arises because the metal inhibits the radiation from part of the dipole population, thus creating an asymmetry and therefore a net current. Experimental investigations confirm the simulations and show that metal-mask dipole inhibition can be used to create THz emitters.Comment: 9 pages, 5 figures; Fixed figure

    The Lag Model Applied to High Speed Flows

    Get PDF
    The Lag model has shown great promise in prediction of low speed and transonic separations. The predictions of the model, along with other models (Spalart-Allmaras and Menter SST) are assessed for various high speed flowfields. In addition to skin friction and separation predictions, the prediction of heat transfer are compared among these models, and some fundamental building block flowfields, are investigated

    Immunoproteasome LMP2 60HH Variant Alters MBP Epitope Generation and Reduces the Risk to Develop Multiple Sclerosis in Italian Female Population

    Get PDF
    Background: Albeit several studies pointed out the pivotal role that CD4+T cells have in Multiple Sclerosis, the CD8+ T cells involvement in the pathology is still in its early phases of investigation. Proteasome degradation is the key step in the production of MHC class I-restricted epitopes and therefore its activity could be an important element in the activation and regulation of autoreactive CD8+ T cells in Multiple Sclerosis. Methodology/Principal Findings: Immunoproteasomes and PA28-ab regulator are present in MS affected brain area and accumulated in plaques. They are expressed in cell types supposed to be involved in MS development such as neurons, endothelial cells, oligodendrocytes, macrophages/macroglia and lymphocytes. Furthermore, in a genetic study on 1262 Italian MS cases and 845 controls we observed that HLA-A*02+ female subjects carrying the immunoproteasome LMP2 codon 60HH variant have a reduced risk to develop MS. Accordingly, immunoproteasomes carrying the LMP2 60H allele produce in vitro a lower amount of the HLA-A*0201 restricted immunodominant epitope MBP111\u2013119. Conclusion/Significance: The immunoproteasome LMP2 60HH variant reduces the risk to develop MS amongst Italian HLAA* 02+ females. We propose that such an effect is mediated by the altered proteasome-dependent production of a specific MBP epitope presented on the MHC class I. Our observations thereby support the hypothesis of an involvement of immunoproteasome in the MS pathogenesis

    Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products

    Get PDF
    To advance monitoring of surface water resources, new remote sensing technologies including the forthcoming Surface Water and Ocean Topography (SWOT) satellite (expected launch 2022) and its experimental airborne prototype AirSWOT are being developed to repeatedly map water surface elevation (WSE) and slope (WSS) of the world’s rivers, lakes, and reservoirs. However, the vertical accuracies of these novel technologies are largely unverified; thus, standard and repeatable field procedures to validate remotely sensed WSE and WSS are needed. To that end, we designed, engineered, and operationalized a Water Surface Profiler (WaSP) system that efficiently and accurately surveys WSE and WSS in a variety of surface water environments using Global Navigation Satellite Systems (GNSS) time-averaged measurements with Precise Point Positioning corrections. Here, we present WaSP construction, deployment, and a data processing workflow. We demonstrate WaSP data collections from repeat field deployments in the North Saskatchewan River and three prairie pothole lakes near Saskatoon, Saskatchewan, Canada. We find that WaSP reproducibly measures WSE and WSS with vertical accuracies similar to standard field survey methods [WSE root mean squared difference (RMSD) ∌8 cm, WSS RMSD ∌1.3 cm/km] and that repeat WaSP deployments accurately quantify water level changes (RMSD ∌3 cm). Collectively, these results suggest that WaSP is an easily deployed, self-contained system with sufficient accuracy for validating the decimeter-level expected accuracies of SWOT and AirSWOT. We conclude by discussing the utility of WaSP for validating airborne and spaceborne WSE mappings, present 63 WaSP in situ lake WSE measurements collected in support of NASA’s Arctic-Boreal and Vulnerability Experiment, highlight routine deployment in support of the Lake Observation by Citizen Scientists and Satellites project, and explore WaSP utility for validating a novel GNSS interferometric reflectometry LArge Wave Warning System

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing

    Get PDF
    Microbial ecology is plagued by problems of an abstract nature. Cell sizes are so small and population sizes so large that both are virtually incomprehensible. Niches are so far from our everyday experience as to make their very definition elusive. Organisms that may be abundant and critical to our survival are little understood, seldom described and/or cultured, and sometimes yet to be even seen. One way to confront these problems is to use data of an even more abstract nature: molecular sequence data. Massive environmental nucleic acid sequencing, such as metagenomics or metatranscriptomics, promises functional analysis of microbial communities as a whole, without prior knowledge of which organisms are in the environment or exactly how they are interacting. But sequence-based ecological studies nearly always use a comparative approach, and that requires relevant reference sequences, which are an extremely limited resource when it comes to microbial eukaryotes

    Protocol for a partially nested randomised controlled trial to evaluate the effectiveness of the scleroderma patient-centered intervention network COVID-19 home-isolation activities together (SPIN-CHAT) program to reduce anxiety among at-risk scleroderma patients

    Get PDF
    Objective: Contagious disease outbreaks and related restrictions can lead to negative psychological outcomes, particularly in vulnerable populations at risk due to pre-existing medical conditions. No randomised controlled trials (RCTs) have tested interventions to reduce mental health consequences of contagious disease outbreaks. The primary objective of the Scleroderma Patient-centered Intervention Network COVID-19 Home-isolation Activities Together (SPIN-CHAT) Trial is to evaluate the effect of a videoconference-based program on symptoms of anxiety. Secondary objectives include evaluating effects on symptoms of depression, stress, loneliness, boredom, physical activity, and social interaction.Methods: The SPIN-CHAT Trial is a pragmatic RCT that will be conducted using the SPIN-COVID-19 Cohort, a sub-cohort of the SPIN Cohort. Eligible participants will be SPIN-COVID-19 Cohort participants without a positive COVID-19 test, with at least mild anxiety (PROMIS Anxiety 4a v1.0 T-score >= 55), not working from home, and not receiving current counselling or psychotherapy. We will randomly assign 162 participants to intervention groups of 7 to 10 participants each or waitlist control. We will use a partially nested RCT design to reflect dependence between individuals in training groups but not in the waitlist control. The SPIN-CHAT Program includes activity engagement, education on strategies to support mental health, and mutual participant support. Intervention participants will receive the 4-week (3 sessions per week) SPIN-CHAT Program via video-conference. The primary outcome is PROMIS Anxiety 4a score immediately post-intervention.Ethics and dissemination: The SPIN-CHAT Trial will test whether a brief videoconference-based intervention will improve mental health outcomes among at-risk individuals during contagious disease outbreak

    Large-scale discovery of novel genetic causes of developmental disorders

    Get PDF
    Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders1, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach2 to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing3,4,5,6,7,8,9,10,11 and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore