93 research outputs found
Multiple hypothesis testing and clustering with mixtures of non-central t-distributions applied in microarray data analysis
Multiple testing analysis, based on clustering methodologies, is usually applied in Microarray Data Analysis for comparisons between pair of groups. In this paper, we generalize this methodology to deal with multiple comparisons among more than two groups obtained from microarray expressions of genes. Assuming normal data, we define a statistic which depends on sample means and sample variances, distributed as a non-central t-distribution. As we consider multiple comparisons among groups, a mixture of non-central t-distributions is derived. The estimation of the components of mixtures is obtained via a Bayesian approach, and the model is applied in a multiple comparison problem from a microarray experiment obtained from gorilla, bonobo and human cultured fibroblasts.Clustering, MCMC computation, Microarray analysis, Mixture distributions, Multiple hypothesis testing, Non-central t-distribution
On First Passage Times in Discrete Skeletons and Uniformized Versions of a Continuous-Time Markov Chain
In this paper, the aim is to study similarities and differences between a continuous-time Markov chain and its uniformized Markov chains and discrete skeletons in terms of first passage times when the taboo subset of states is assumed to be accessible from a class of communicating states. Under the assumption of a finite communicating class, we characterize the first-passage times in terms of either continuous or discrete phase-type random variables. For illustrative purposes, we show how first passage times in uniformized Markov chains and discrete skeletons can be used to approximate the random duration of an outbreak in the SIS epidemic model
Recent changes in the pelagic ecosystem of the Iberian Atlantic in the context of multidecadal variability
Trends in ecosystem variables of the Eastern North Atlantic shelf near the Iberian Peninsula
were analysed in relation to regional climate and oceanographic variability. In addition,
detailed changes in oceanographic properties (surface temperature, upwelling and poleward
current activity) and biological components (plankton and pelagic consumers) in the period
1989-2005 were compared with the main trends and multidecadal periods observed in time
series dating back to 1950. In contrast to previous studies, the North Atlantic Oscillation did
not appear as the main influence in the climate of the North Iberian region, while East-West
and subtropical gradients were the dominant modes. Climatic oscillations at decadal scales
were paralleled by similar oscillations in oceanographic and biological variables, but the latter
appeared weakly related to climate. Time- lags of up to 5 years in the biological response may
partly explain these relationships. The main planktivorous fish species (sardine and anchovy)
alternate in periods of 10-15 years of relative dominance, in synchrony with equivalent
species around the world. In contrast, plankton cycles appear greatly modified after 1990 in
coincidence with shifts in climatic and oceanographic variables. Subregional variability
indicated divergent trends in biological variables, particularly the zooplankton increase off A
Coruña and the decrease in the Bay of Biscay since 1990. Such divergences are related to
direct and indirect effects of global changes in this transitional upwelling region
Identification and Functional Characterization of Two Intronic NIPBL Mutations in Two Patients with Cornelia de Lange Syndrome
Cornelia de Lange syndrome (CdLS) is a rare genetically heterogeneous disorder with a high phenotypic variability including mental retardation, developmental delay, and limb malformations. The genetic causes in about 30% of patients with CdLS are still unknown. We report on the functional characterization of two intronic NIPBL mutations in two patients with CdLS that do not affect a conserved splice-donor or acceptor site. Interestingly, mRNA analyses showed aberrantly spliced transcripts missing exon 28 or 37, suggesting the loss of the branch site by the c.5329-15A>G transition and a disruption of the polypyrimidine by the c.6344del(-13)-(-8) deletion. While the loss of exon 28 retains the reading frame of the NIBPL transcript resulting in a shortened protein, the loss of exon 37 shifts the reading frame with the consequence of a premature stop of translation. Subsequent quantitative PCR analysis demonstrated a 30% decrease of the total NIPBL mRNA levels associated with the frameshift transcript. Consistent with our results, this patient shows a more severe phenotype compared to the patient with the aberrant transcript that retains its reading frame. Thus, intronic variants identified by sequencing analysis in CdLS diagnostics should carefully be examined before excluding them as nonrelevant to disease
Buenas Prácticas en los Programas Universitarios para Mayores en España
Ana Isabel Muñoz Alcón y Francisco Trullén Galve (Universidad Catolica de Ávila); María P. García de la Torre y Francisco Ascón Belver (Universidad de A Coruña); M. Isabel Luis Rico, Ángel Gañán Adánez, Tamara de la Torre Cruz, Vanesa Baños Martínez (Universidad de Burgos); Yolanda Lázaro Fernández y Jaime Cuenca Amigo (Universidad de Deusto); Camino Caballero Posado (Universidad de Extremadura); Mª Adoración Holgado Sánchez y Mª Teresa Ramos Bernal (Universidad Pontificia de Salamanca); Sara Serrate González, Javier Alba Barrios y José Manuel Muñoz Rodríguez; Miguel Ángel Nombela Castaño (Universidad de Vigo
Integrated flow cytometry and sequencing to reconstruct evolutionary patterns from dysplasia to acute myeloid leukemia
Clonal evolution in acute myeloid leukemia (AML) originates long before diagnosis and is a dynamic process that may affect survival. However, it remains uninvestigated during routine diagnostic workups. We hypothesized that the mutational status of bone marrow dysplastic cells and leukemic blasts, analyzed at the onset of AML using integrated multidimensional flow cytometry (MFC) immunophenotyping and fluorescence-activated cell sorting (FACS) with next-generation sequencing (NGS), could reconstruct leukemogenesis. Dysplastic cells were detected by MFC in 285 of 348 (82%) newly diagnosed patients with AML. Presence of dysplasia according to MFC and World Health Organization criteria had no prognostic value in older adults. NGS of dysplastic cells and blasts isolated at diagnosis identified 3 evolutionary patterns: stable (n = 12 of 21), branching (n = 4 of 21), and clonal evolution (n = 5 of 21). In patients achieving complete response (CR), integrated MFC and FACS with NGS showed persistent measurable residual disease (MRD) in phenotypically normal cell types, as well as the acquisition of genetic traits associated with treatment resistance. Furthermore, whole-exome sequencing of dysplastic and leukemic cells at diagnosis and of MRD uncovered different clonal involvement in dysplastic myelo-erythropoiesis, leukemic transformation, and chemoresistance. Altogether, we showed that it is possible to reconstruct leukemogenesis in ∼80% of patients with newly diagnosed AML, using techniques other than single-cell multiomics.This work was supported by grants from the Área de Oncología del Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red (CIBER-ONC) (CB16/12/00369, CB16/12/00233, CB16/12/00489, and CB16/12/00284), Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS numbers PI16/01661, PI16/00517, and PI19/01518), and the Plan de Investigación de la Universidad de Navarra (PIUNA 2014-18). This work was supported internationally by the Cancer Research UK, FCAECC, and AIRC under the Accelerator Award Program (EDITOR)
Guía para la introducción de la perspectiva de género en la docencia de la Universidad Pablo de Olavide
Universidad Pablo de Olavid
Impact of measurable residual disease by decentralized flow cytometry: a PETHEMA real-world study in 1076 patients with acute myeloid leukemia
The role of decentralized assessment of measurable residual disease (MRD) for risk stratification in acute myeloid leukemia (AML) remains largely unknown, and so it does which methodological aspects are critical to empower the evaluation of MRD with prognostic significance, particularly if using multiparameter flow cytometry (MFC). We analyzed 1076 AML patients in first remission after induction chemotherapy, in whom MRD was evaluated by MFC in local laboratories of 60 Hospitals participating in the PETHEMA registry. We also conducted a survey on technical aspects of MRD testing to determine the impact of methodological heterogeneity in the prognostic value of MFC. Our results confirmed the recommended cutoff of 0.1% to discriminate patients with significantly different cumulative-incidence of relapse (-CIR- HR:0.71, P < 0.001) and overall survival (HR: 0.73, P = 0.001), but uncovered the limited prognostic value of MFC based MRD in multivariate and recursive partitioning models including other clinical, genetic and treatment related factors. Virtually all aspects related with methodological, interpretation, and reporting of MFC based MRD testing impacted in its ability to discriminate patients with different CIR. Thus, this study demonstrated that “real-world” assessment of MRD using MFC is prognostic in patients at first remission, and urges greater standardization for improved risk-stratification toward clinical decisions in AML.This study was supported by the Centro de Investigación Biomédica en Red – Área de Oncología - del Instituto de Salud Carlos III (CIBERONC; CB16/12/00369, CB16/12/00233, CB16/12/00284 and CB16/12/00400), Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS No. PI16/01661, PI16/00517 and PI18/01946), Gerencia Regional de Salud de CyL (GRS 1346/A/16) and the Plan de Investigación de la Universidad de Navarra (PIUNA 2014-18). This study was supported internationally by the Cancer Research UK, FCAECC and AIRC under the Accelerator Award Program EDITOR
Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment
BackgroundHuman papillomavirus vaccines prevent human papillomavirus infection and cervical precancers. The impact of vaccinating women with a current infection or after treatment for an human papillomavirus-associated lesion is not fully understood.ObjectivesTo determine whether human papillomavirus-16/18 vaccination influences the outcome of infections present at vaccination and the rate of infection and disease after treatment of lesions.Study DesignWe included 1711 women (18−25 years) with carcinogenic human papillomavirus infection and 311 women of similar age who underwent treatment for cervical precancer and who participated in a community-based trial of the AS04-adjuvanted human papillomavirus-16/18 virus-like particle vaccine. Participants were randomized (human papillomavirus or hepatitis A vaccine) and offered 3 vaccinations over 6 months. Follow-up included annual visits (more frequently if clinically indicated), referral to colposcopy of high-grade and persistent low-grade lesions, treatment by loop electrosurgical excisional procedure when clinically indicated, and cytologic and virologic follow-up after treatment. Among women with human papillomavirus infection at the time of vaccination, we considered type-specific viral clearance, and development of cytologic (squamous intraepithelial lesions) and histologic (cervical intraepithelial neoplasia) lesions. Among treated women, we considered single-time and persistent human papillomavirus infection, squamous intraepithelial lesions, and cervical intraepithelial neoplasia 2 or greater. Outcomes associated with infections absent before treatment also were evaluated. Infection-level analyses were performed and vaccine efficacy estimated.ResultsMedian follow-up was 56.7 months (women with human papillomavirus infection) and 27.3 months (treated women). There was no evidence of vaccine efficacy to increase clearance of human papillomavirus infections or decrease incidence of cytologic/histologic abnormalities associated with human papillomavirus types present at enrollment. Vaccine efficacy for human papillomavirus 16/18 clearance and against human papillomavirus 16/18 progression from infection to cervical intraepithelial neoplasia 2 or greater were −5.4% (95% confidence interval −19,10) and 0.3% (95% confidence interval −69,41), respectively. Among treated women, 34.1% had oncogenic infection and 1.6% had cervical intraepithelial neoplasia 2 or greater detected after treatment, respectively, and of these 69.8% and 20.0% were the result of new infections. We observed no significant effect of vaccination on rates of infection/lesions after treatment. Vaccine efficacy estimates for human papillomavirus 16/18 associated persistent infection and cervical intraepithelial neoplasia 2 or greater after treatment were 34.7% (95% confidence interval −131, 82) and −211% (95% confidence interval −2901, 68), respectively. We observed evidence for a partial and nonsignificant protective effect of vaccination against new infections absent before treatment. For incident human papillomavirus 16/18, human papillomavirus 31/33/45, and oncogenic human papillomavirus infections post-treatment, vaccine efficacy estimates were 57.9% (95% confidence interval −43, 88), 72.9% (95% confidence interval 29, 90), and 36.7% (95% confidence interval 1.5, 59), respectively.ConclusionWe find no evidence for a vaccine effect on the fate of detectable human papillomavirus infections. We show that vaccination does not protect against infections/lesions after treatment. Evaluation of vaccine protection against new infections after treatment and resultant lesions warrants further consideration in future studies
Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment
Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death
- …