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Abstract

Multiple testing analysis, based on clustering methodologies, is usually applied in Microarray Data
Analysis for comparisons between pair of groups. In this paper, we generalize this methodology to
deal with multiple comparisons among more than two groups obtained from microarray expressions
of genes. Assuming normal data, we define a statistic which depends on sample means and sample
variances, distributed as a non-central t-distribution. As we consider multiple comparisons among
groups, a mixture of non-central t-distributions is derived. The estimation of the components of
mixtures is obtained via a Bayesian approach, and the model is applied in a multiple comparison
problem from a microarray experiment obtained from gorilla, bonobo and human cultured fibroblasts.

Keywords: Clustering; MCMC computation; Microarray analysis; Mixture distributions; Multiple
hypothesis testing; non-central t-distribution.
AMS 2000 subject classifications. Primary 62-02; secondary 62E10, 62F15.

1 Introduction

Nowadays, in Bioinformatics the analysis of expression data from microarray technologies is one of the
main tasks. Specifically, in Genomics, the analysis of gene expression from microarrays is undertaken
with two main techniques: multiple hypothesis testing and cluster analysis (e.g. Medvedovic and
Sivaganesan (2002), Dudoit et al. (2003) and McLachlan et al. (2002)). Clustering techniques are
widely used in Bioinformatics because genes usually present high correlations and they can be grouped
together; this correlation may reflect underlying biological factors of interest, such as regulation by
common transcription factors. On other hand, multiple testing methods aim to detect differences in
the expressions of genes under different treatment conditions.

Although both techniques has been treated independently, recently they have been joined in a
common framework (see Yuan and Kendziorski (2006), Dahl and Newton (2007), and Dahl et al.
(2008)). They consider a mixture of both techniques where the multiple testing procedure are highly
improved taking into account clusters that share similar parameter values.

In this paper, we consider a methodology to analyse differences among mean expressions of genes in
microarray data, under different treatment conditions. We will follow the mixed approach of multiple
testing and cluster analysis. Usually, multiple testing procedures only deal with comparison between
pairs of groups, and with a cluster approach not only the process of multiple comparisons is improved
but many groups can be compared at the same time.

In the gene expression context, after normalization and data cleaning, it can be assumed that
expressions are normally distributed. But as we deal with different sample sizes and sample estimates,
it is convenient to define statistics which take account of them. Therefore, we will consider a statistic
distributed with a non-central t-distribution (see Johnson et al. (1995)).
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We take groups of statistics, distributed as non-central t-distributions, related for each treatment
condition and possibly similar expression profiles among different genes. In this way, we can take a
mixture of non-central t-distributions approach, to tackle with different groups of expressions along
the different treatment conditions where gene expressions are considered.

As the non-central t-distribution has cumbersome expressions for its density function (see Johnson
et al. (1995)), we take an alternative parametrization in terms of scale mixtures of normal distributions
(see Tsionas (2002)). In this way, the model can be seen as a discrete mixture of scale mixtures
of normal distributions and the estimation process may be cumbersome. Nevertheless a Bayesian
approach presents a good performance with not huge amount of data.

We have used, as software to program the algorithms, Jags (see Plummer (2003)). It seems to
be adapted to mixture modelling and it permits sorting the parameters for avoiding problems about
identifiability of the components of the mixtures.

The paper is organized as follows. In section 2 we describe the theoretical model. In section 3 we
show the prior distributions and compute the posterior distributions of the parameters of the model.
In section 4 we consider first some simulated data to check the procedure, and then an analysis of a
microarray data set described in Karaman et al. (2003) with three related species (gorillas, bonobos
and humans). Finally, in section 5, we present some conclusions and hints about the methodology
and results shown in the paper.

2 Model for the distribution of microarray expressions

We consider a known set of g genes (g = 1, . . . , G) under a treatment conditions whose expressions are
measured by microarray techniques. The respective expressions are modelized by g × a random vari-

ables: Xg
1 , . . . , X

g
a . Let us denote,

(
xgi1, . . . , x

g
inig

)
a sample from a random variable Xg

i ∼ N
(
µgXi, σ

g
)
,

where i = 1, . . . , a treatment conditions and g = 1, . . . , G genes.
Each element g is the expression of a given gene that can be measured under a different conditions

and we want to compare all groups of expressions by using a multiple tests procedure:
Hg

0 : µgX1
= µgX2

= · · · = µgXa
Hg

1 : at least one µgXi 6= µgXj
for g = 1, . . . , G

For each gene (g) we define the following statistics

T gXi =
xig

Sgxi/
√
nig

,

for i = 1, . . . , a treatment conditions. As
(
xgi1, . . . , x

g
inig

)
is a random sample from a N

(
µgXi , σ

g
)

,

then T gXi is distributed as a non-central t-distribution for i = 1, . . . , a (see chap. 31 of Johnson et al.
(1995)). We will denote

T gXi ∼ tnig−1(δig),

where (nig − 1) and δig =
√
nigµ

g
Xi
/σg are the respective grades of freedom and centrality parameters

of T gXi .
Let us denote as T the vector of all possible T gXi statistics with dimension aG; if we consider a

multiple test procedure, via a cluster approach, there may be k different groups, and the distribution
of this vector can be modelized as a mixture of k non-central t-distributions,

f (t|ν, δ, α) =
k∑
j=1

αjf (t|νj , δj)
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where ν = (ν1, . . . , νk) are the grades of freedom, (δ1, . . . , δk), are the centrality parameters, α =
(α1, . . . , αk) are the weights of the mixture and f (t|νj , δj) are the density functions of the non-central
t-distributions.

The null hypothesis Hg
0 is not rejected when all groups in which a gene g is considered, belong to

the same component of the mixture of non-central t-distributions.

2.1 Parametrization of the non-central t-distribution as a scale mixture of distri-
butions

There are several ways to write the density function of the non-central t-distribution, but they usually
involve complex expressions in terms of integrals, e.g. as

f(x) =
ν
ν
2

exp

[
− νµ2

2(x2+ν)

]
√
πΓ
(
ν
2

)
2
ν−1
2 (x2 + ν)

(ν+1)
2

∫ ∞
0

yν exp

[
−1

2

(
y − µx√

x2 + ν

)2
]
dy.

Expressions like this are fairly cumbersome to use in computational tasks. But in Tsionas (2002) the
non-central t-distribution is showed to be a scale mixture of normal distributions, and it is introduced
in a regression problem with a Bayesian approach.

In this work, we will use this parametrization in terms of scale mixture of normal distributions.
Therefore, by definition, the non-central t-distribution is

T = ω1/2(Z + δ) ∼ tν(δ),

where Z ∼ N (0, 1) and ν
ω ∼ χ

2
ν independently, and δ ∈ R.

Then, it follows, if we write previous expressions in terms of a hierarchical model that

X|ω ∼ N
(
ω1/2δ, ω1/2

)
ν

ω
∼ χ2

ν .

Or, equivalently, the density function can be written as

f(x|ω, δ) =
1√
2π

ν
ν
2

2ν/2Γ
(
ν
2

) ∫ ∞
0

exp

(
− 1

2ω

(
(x− ω1/2δ)2 + ν

))
ω−

ν
2
− 3

2dω.

The expression of a mixture of normal distributions in terms of a hierarchical framework permits to
apply a MCMC simulation-based procedure under a Bayesian approach (see Choy and Smith (1997)).

Likelihood of the model

As we consider a discrete mixture of t-distributions, for t = (t1, . . . , taG), the complete likelihood is

L (ν, δ, α|t) =
aG∏
i=1

f (ti|ν, δ, α) =
aG∏
i=1

k∑
j=1

αjf (ti|νj , δj) .

As this expression in practice is unwieldy, we can introduce (see e.g. Marin and Robert (2007)) index
variables Zi, for i = 1, . . . , aG that point out the element of the mixture which each ti belongs to.

In this way,
P (Zi = j|α) = αj ,
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for i = 1, . . . , aG and j = 1, . . . , k. Then, the conditional distribution of ti for each fixed Zi = j is

f (ti|Zi = j, ν, δ) = f (ti|Zi = j, νj , δj) ,

where
(ti|Zi = j, νj , δj) ∼ tνj (δj) ,

and the joint distribution of ti and Zi is

f (ti, Zi|ν, δ, α) = f (ti|Zi, ν, δ) · P (Zi|α) .

As we consider the expression of the non-central t-distribution as a mixture of normals distribu-
tions, the likelihood can be expressed as a three-stage hierarchical model,

ti|Zi, ν, δ, ω ∼ N
(
ω

1/2
j δj , ω

1/2
j

)
for i = 1, . . . , aG j = 1, . . . , k

ωj |νj , δ ∼ IChiq(νj) for j = 1, . . . , k
P (Zi = j) = αj for i = 1, . . . , aG j = 1, . . . , k

Or, equivalently,

L (ν, δ, α, ω|t, Z) =
aG∏
i=1

f (ti, ω|Zi, ν, δ) · P (Zi|α) =∏
{i:Zi=1}

α1f (ti, ω1|ν1, δ1) · · · · ·
∏

{i:Zi=k}

αkf (ti, ωk|νk, δk) =

k∏
j=1


αj 1√

2π

ν
νj
2
j

2νj/2Γ
(νj

2

)ω− νj2 − 3
2

j

nj ∏
{i:Zi=j}

exp

(
− 1

2ωj

(
(ti − ω1/2

j δj)
2 + νj

))
where nj = #{i : Zi = j}.

3 Posterior distributions of parameters

The posterior distribution of the parameters (ν, δ, α, ω) of the mixture of non-central t-distributions
is the product of the likelihood function by the prior distribution of the parameters,

π (ν, δ, α, ω|t, Z) ∝ L (ν, δ, α, ω|t, Z) · π(ν) · π(δ) · π(α) · π(ω)

We consider the prior distributions for the parameters, introducing vague or diffuse information.

(i) For parameter α we consider a non-informative Dirichlet distribution: α ∼ Dirichlet(1, . . . , 1),
namely, π(α) ∝ 1.

(ii) For parameters νj we consider truncated Poisson distributions νj ∼ TruncPoisson(λ), where
λ > 1, namely, P (νj = l) = 1

l!λ
le−λ · 1

(1−e−λ−λe−λ)
, for l = 2, . . .

(iii) For vector of parameters δ we assume π(δ) ∝
∏k
j=1 π(δj), where each δj is distributed as trun-

cated normal distributions in (0,∞), δj ∼ TruncN(µ, σ), namely, π(δj) = 1
1−Φ(−µσ )

1
σφ
(
δj−µ
σ

)
,

where φ is the density function and Φ the distribution function of a standard normal distribution.
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(iv) ωj ∼ IG(α0, β0), namely, π(ωj) ∝
(

1
ωj

)α0+1
exp

(
−β0
ωj

)
.

Then the full posterior distribution can be written as

π (ν, δ, α, ω|t, Z) ∝ L (ν, δ, α, ω|t, Z) ·
k∏
j=1

[
1

νj !
λνj ·

(
1

ωj

)α0+1

· exp

(
−β0

ωj

)
· φ
(
δj − µ
σ

)]
∝

∝
k∏
j=1


αj 1√

2π

ν
νj
2
j

2νj/2Γ
(νj

2

)
nj

1

νj !
λνj · φ

(
δj − µ
σ

)
· ω

(
−
νj
2
− 3

2

)
nj−α0−1

j ·

exp

(
−β0

ωj

)
·
∏

{i:Zi=j}

exp

(
− 1

2ωj

(
(ti − ω1/2

j δj)
2 + νj

))
The corresponding conditional posterior distributions of the parameters are,

(i) α|ν, δ, ω, t, Z ∼ Dirichlet (n1 + 1, . . . , nk + 1), namely,

π (α|ν, δ, ω, t, Z) ∝ αn1
1 · · · · · α

nk
k

(ii)

π (νj = lj |δ, ω, t, Z, δj) ∝ l
lj
2
j

2lj/2Γ
(
lj
2

)

nj

1

lj !
λlj · ω

(
−
lj
2
− 3

2

)
nj−α0−1

j

∏
{i:Zi=j}

exp

(
− 1

2ωj

(
(ti − ω1/2

j δj)
2 + lj

))
for j = 1, . . . , k.

(iii)

π (δj |t, Z, νj , α, ω) ∝ φ
(
δj − µ
σ

)
·
∏

{i:Zi=j}

exp

(
− 1

2ωj

(
(ti − ω1/2

j δj)
2 + νj

))
for j = 1, . . . , k.

(iv)

P (Zi = j|α, ν, δ, ti, ω) ∝αj ν
νj
2
j

2νj/2Γ
(νj

2

)
nj

· 1

νj !
λνj · φ

(
δj − µ
σ

)
· ω

(
−
νj
2
− 3

2

)
nj−α0−1

j · exp

(
−β0

ωj

)
·

exp

(
− 1

2ωj

(
(ti − ω1/2

j δj)
2 + νj

))
for i = 1, . . . , aG.

(v)

π (ωj |t, Z, νj , α, δ) ∝ ω
(
−
νj
2
− 3

2

)
nj−α0−1

j · exp

(
−β0

ωj

)
·
∏

{i:Zi=j}

exp

(
− 1

2ωj

(
(ti − ω1/2

j δj)
2 + νj

))
for j = 1, . . . , k.
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Classification rule In order to classify the observation ti into a given component, we compute for
all j = 1, . . . , k,

ji = max
j

{
#{t : Z

(t)
i = j}

}
and then we classify ti in the corresponding component ji where the maximum is attained.

In terms of the multiple hypothesis testing procedure, for g = 1, . . . , G, the hypothesis Hg
0 is

rejected if at least one T gXi (where i = 1, . . . , a treatment conditions) is located in a different component
of the mixture of t-distributions to the other T gXj (where j 6= i and j = 1, . . . , a).

4 Applications

We show an application of the previous theoretical results, by analysing the expressions from a mi-
croarray experiment of human, bonobo and gorilla cultured fibroblasts rendered by Karaman et al.
(2003). As a preliminary step we test the procedure with simulated data. In all cases we have pro-
grammed the algorithms with Jags (see Plummer (2003)). One advantage of using Jags is that not
only it constructs the full conditional distributions and it carries out the Gibbs sampling from the
model specifications, but it allows to sort the parameters for avoiding problems about identifiability
of the components of the mixtures. All codes are available from the authors, upon request.

4.1 Synthetic data

In order to check the procedure, we simulate expressions of 50 synthetic genes under three given
conditions from normal distributions with different means (10, 40, 100, 150, 200, 250, 300) and same
variance equal to 10. As sampling sizes for each group of conditions, we take n1 = 20, n2 = 30 and
n3 = 20. In this case, 40 genes were simulated as having the same means over the three groups and
10 genes had different means for each group.

We take as prior distributions those shown in section 3, and we consider a mixture of non central
t-distributions with an unknown number of components. Observe that the number of components may
be considered as a parameter, and a reversible jump methodology can be applied to explore among
spaces of different dimensions (see e.g. Green (1995) and Richardson and Green (1997)). Nevertheless,
in the context of multiple testing associated with cluster problems it is better, from a practical point
of view, to use a criterion of optimal measure of complexity and fit of models, to determine the
number of components of a mixture of t-distributions. We use a modified version of the standard DIC
coefficient, because in mixture models problems of identifiability can appear. This modification of the
DIC coefficient was pointed out by Richardson (2002) and revised by Celeux et al. (2006), who named
that version as DIC3. The expression of this coefficient is

DIC3 = −4Eθ|y[log f(y | θ)] + 2 log f̂(y),

where f̂(y) =
∏n
i=1 f̂(yi), and f̂(yi) = Eθ|y[f(yi | θ)]. We use this criterion to compare among models

with different number of components of mixtures, and we take the model with the smallest DIC3.
In table 1 we show the DIC3 values for different number of components of the mixtures (k); we

take for each computation of DIC3 20000 iterations with 10000 iterations for burn-in. A post hoc
analysis of chains did not show a significant departure from convergence. The lowest values are found
for k = 4 and k = 7 with not many differences among them; in this case a slightly smaller value,
613.90, is obtained for k = 7. Observe that this result is fairly closed to the desired objective, as the
simulation was based in 7 groups with different means and same variance.
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k 2 3 4 5

DIC3 692.35 621.67 614.04 625.24

k 6 7 8 9

DIC3 625.55 613.90 617.51 618.79

k 10

DIC3 622.24

Table 1: Values of DIC3 for k components of mixtures

We consider, therefore, the analysis of a mixture model with k = 7 elements. Results show a good
behaviour, as the estimated probability of type I error is only 0.02, namely, only a 2% of all hypotheses
are rejected being true. By the other hand, we have an estimated value of the false discovery rate
(FDR) of 0.025, namely, only a 2.5% of those hypotheses that are true, are rejected. We also have
obtained that no one of hypotheses are accepted being false, but among them, 4% of hypotheses
being false are classified with a different mean than those that were simulated from. The mixture of
non-central t-distributions, which corresponds to the distribution of the statistics that we defined, fits
correctly the simulated data. Moreover, with this approach we can consider at the same time different
groups of genes in order to make multiple comparisons.

4.2 An application in Bioinformatics

Once we have checked the procedure with simulated data, we consider an application in Bioinformatics.
We take data from a microarray experiment with human (Homo sapiens), bonobo (Pan paniscus) and
gorilla (Gorilla gorilla) cultured fibroblasts done by Karaman et al. (2003). Expressions profiles are
obtained by means of Affymetrix HG U95Av2 chips for 12625 genes in 46 samples (23 humans, 11
bonobos and 12 gorillas), and they are available in the Bioconductor library fibroEset (see Gentleman
et al. (2004)). In order to study genes with relevant effects, we select 95 genes whose expression scores
are greater or equal than 6000.

As a first step, we consider a glance at the data by means of the package made4 (Culhane et al.
(2005)), from the Bioconductor bundle. We show a dendrogram with a hierarchical cluster analysis
(based on a Pearson correlation distance metric with average linkage) of the 46 individuals, a boxplot
and a histogram of the data.

In figure 1, red color corresponds to bonobos, green color corresponds to humans and blue color to
gorillas. Apparently there is a slightly more proximity between bonobos and humans than in the case
of gorillas. This is coherent with the evolutionary origin of the three species. Having a look to the
boxplot it shows that sample variances are roughly equal for the three species, although distribution
of data are far from a single distribution. The histogram shows an asymmetric distribution of data;
therefore, as the original data were originally re-normalized by Karaman et al. (2003), they correspond
to the three population normal distributions of the expressions of genes.

In order to have a look to the number of possible groups included in data, we apply a hybrid
clustering method, HOPACH (Hierarchical Ordered Partitioning And Collapsing Hybrid), which is a
popular technique used in Bioinformatics. It builds a hierarchical tree of clusters using partitioning and
agglomerative methods (see van der Laan and Pollard (2003)). We obtain the following dendrogram,
that suggests about 7 main clusters.

Now, we consider a mixture of non-central t-distributions with an unknown number of components.
Although in figure 2 it is suggested about 7 clusters we compute also the DIC3 values for different
number of components k, which are shown in table 2. Results are obtained after a total of 20000
iterations with 10000 iterations for burn-in. The lowest value, 1438.83, is obtained for k = 6. We also
considered a post hoc analysis of chains which did not show a significant departure from convergence.
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Figure 1: Overview of data: dendrogram with average linkage clustering, boxplot and histogram.

k 2 3 4 5

DIC3 1602.50 1536.20 1478.37 1465.82

k 6 7 8 9

DIC3 1438.83 1454.75 1457.89 1450.32

k 10

DIC3 1468.37

Table 2: Values of DIC3 with respect to k

We consider, therefore, the analysis of a mixture model with k = 6 elements. The posterior
distribution of the means (δj , j = 1, . . . 6) of each component of the mixture are shown in table 3.

mean sd HPD 2.5% Median HPD 97.5%

µ1 2872.6 620 880 2930 3880
µ2 3754.5 700 2700 3670 5230
µ3 4534.1 780 3270 4420 6540
µ4 5539.3 980 4050 5460 7200
µ5 7070.0 2820 4650 6600 12870
µ6 19884.4 30250 5880 10060 79020

Table 3: Posterior distribution of means of the six components of the mixture

Based on previous clusters, we can propose the classification of each T statistic, based on the
criterion presented in section 3 as the rule of classification. Results are shown in table 4.

We deal, as an indirect way to validate the results, with 95 independent ANOVAs which are
computed gene by gene. Direct comparison of results is not possible as ANOVAs do not take into
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Figure 2: Dendogram using HOPACH.

account the conjoint relations among genes. We show the corresponding p-values of the tests in the
last column of table 4. In terms of hypothesis testing, the decisions with respect to equality of the 95
genes are similar between ANOVAs and mixture of t-distributions method, although the independent
ANOVAs tend to accept the hypotheses of equality among genes more frequently than the mixture of
t-distribution method.

It is observed that the statistics show a closer relationship between human and bonobos than
respective to gorillas; this fact is supported by the evolutionary relationships among the three species.
Anyway, deeper insights on a pure genetic interpretation of results obtained in these particular data
are beyond the scope of this paper.
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Gor Bon Hum p-val

1 5 5 3 0.267
2 5 5 3 0.001
3 1 1 1 0.197
4 3 2 1 0.000
5 3 5 2 0.068
6 2 1 1 0.000
7 3 3 1 0.115
8 5 5 3 0.035
9 1 1 1 0.535

10 5 3 2 0.007
11 5 5 2 0.012
12 3 3 1 0.213
13 3 3 2 0.506
14 5 3 3 0.002
15 1 5 1 0.000
16 2 1 1 0.017
17 5 5 1 0.000
18 3 3 1 0.000
19 5 5 2 0.012
20 3 5 1 0.024
21 3 3 1 0.003
22 3 5 3 0.261
23 5 2 2 0.000
24 3 3 1 0.082
25 1 5 2 0.000
26 3 5 3 0.093
27 3 3 1 0.115
28 3 5 1 0.000
29 3 3 1 0.000
30 4 3 3 0.352
31 3 2 1 0.010
32 2 1 1 0.001

Gor Bon Hum p-val

33 5 3 2 0.065
34 3 3 1 0.285
35 3 2 1 0.015
36 3 3 1 0.014
37 3 3 1 0.054
38 5 5 3 0.000
39 5 5 3 0.111
40 3 3 1 0.000
41 2 2 1 0.012
42 3 3 1 0.129
43 5 1 1 0.000
44 5 5 3 0.272
45 5 5 3 0.059
46 5 5 2 0.004
47 2 2 1 0.781
48 3 3 1 0.072
49 2 3 1 0.591
50 3 5 1 0.000
51 1 2 1 0.005
52 5 5 3 0.272
53 5 3 3 0.000
54 2 3 1 0.321
55 1 1 1 0.091
56 5 3 2 0.063
57 5 5 3 0.345
58 3 3 2 0.150
59 3 3 1 0.117
60 3 3 1 0.032
61 5 4 1 0.000
62 3 5 3 0.051
63 1 1 1 0.003
64 5 5 3 0.395

Gor Bon Hum p-val

65 3 3 1 0.970
66 1 2 1 0.000
67 5 3 3 0.012
68 2 1 1 0.000
69 2 3 1 0.000
70 1 1 1 0.462
71 3 3 1 0.000
72 3 3 1 0.465
73 1 1 1 0.647
74 3 3 1 0.015
75 1 1 2 0.001
76 1 3 1 0.010
77 1 1 1 0.000
78 2 3 1 0.194
79 5 5 2 0.100
80 2 3 1 0.220
81 1 1 1 0.003
82 3 5 1 0.000
83 2 2 1 0.522
84 1 1 1 0.596
85 3 3 1 0.502
86 1 1 1 0.987
87 5 5 4 0.209
88 1 1 1 0.000
89 5 5 3 0.916
90 5 4 1 0.012
91 5 5 3 0.563
92 5 5 3 0.361
93 5 5 3 0.491
94 4 5 3 0.020
95 3 3 1 0.788

Table 4: Classification of statistics in the defined groups

5 Conclussions

In this paper we have shown a methodology that is well adapted to multiple hypothesis testing prob-
lems, based on a clustering methodology in Bioinformatics. With this approach, it is possible to tackle
with multiple comparisons among more than two groups of different microarray expressions of genes.
All groups can be analysed at the same time, and it is not necessary to compare them by pairs, as it
is done in the standard post hoc analysis of multiple comparisons analysis.

Observe that original data are assumed to be normally distributed, although this is an usual
assumption in microarray analysis, after standard procedures of normalization and data cleaning.
Then, a mixture of non-central t-distributions is straightforwardly obtained when we define a standard
statistic (denoted by T ). This is related only with the sample means and variances of groups of data;
namely, there are not other guesses in our model but normality of data, and computation of sample
means and sample variances.

By the other hand, the results obtained with simulated data are adequate, and the analysis of
real data renders sensible conclusions in the line of other standard methods of clustering or multiple
testing techniques used in Bioinformatics.
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