226 research outputs found

    Radium-223 in combination with paclitaxel in cancer patients with bone metastases : safety results from an open-label, multicenter phase Ib study

    Get PDF
    Purpose Concomitant treatment with radium-223 and paclitaxel is a potential option for cancer patients with bone metastases; however, myelosuppression risk during coadministration is unknown. This phase Ib study in cancer patients with bone metastases evaluated the safety of radium-223 and paclitaxel. Methods Eligible patients had solid tumor malignancies with >= 2 bone metastases and were candidates for paclitaxel. Treatment included seven paclitaxel cycles (90 mg/m(2) per week intravenously per local standard of care; 3 weeks on/1 week off) plus six radium-223 cycles (55 kBq/kg intravenously; one injection every 4 weeks, starting at paclitaxel cycle 2). The primary end point was percentage of patients with grade 3/4 neutropenia or thrombocytopenia during coadministration of radium-223 and paclitaxel (cycles 2, 3) versus paclitaxel alone (cycle 1). Results Of 22 enrolled patients, 15 were treated (safety population), with 7 completing all six radium-223 cycles. Treated patients had primary cancers of breast (n = 7), prostate (n = 4), bladder (n = 1), non-small cell lung (n = 1), myxofibrosarcoma (n = 1), and neuroendocrine (n = 1). No patients discontinued treatment from toxicity of the combination. In the 13 patients who completed cycle 3, the rates of grade 3 neutropenia in cycles 2 and 3 were 31% and 8%, respectively, versus 23% in cycle 1; there were no cases of grade 4 neutropenia or grade 3/4 thrombocytopenia. Breast cancer subgroup safety results were similar to the overall safety population. Conclusion Radium-223 was tolerated when combined with weekly paclitaxel, with no clinically relevant additive toxicities. This combination should be explored further in patients with bone metastases.Peer reviewe

    Chern-Simons Theory and the Quark-Gluon Plasma

    Full text link
    The generating functional for hard thermal loops in QCD is important in setting up a resummed perturbation theory, so that all terms of a given order in the coupling constant can be consistently taken into account. It is also the functional which leads to a gauge invariant description of Debye screening and plasma waves in the quark-gluon plasma. We have recently shown that this functional is closely related to the eikonal for a Chern-Simons gauge theory. In this paper, this relationship is explored and explained in more detail, along with some generalizations.Comment: 28 pages (4 Feynman diagrams not included, available upon request

    First-in-human phase I/IIa trial to evaluate the safety and initial clinical activity of DuoBody®-PD-L1×4–1BB (GEN1046) in patients with advanced solid tumors

    Get PDF
    Agonistic 4-1BB monoclonal antibodies were preclinically validated as promising cancer immunotherapies, both as monotherapy and as potentiators of the activity of PD-(L) 1–blocking agents. However, toxicity and a narrow therapeutic window have hampered their clinical development. DuoBodyPD-L1×4-1BB, a first-in-class, bispecific, next-generation checkpoint immunotherapy, was designed to overcome these limitations by activating T cells through conditional 4-1BB costimulation, while simultaneously blocking the PD-L1 axis. We present preliminary data from the ongoing, first-in-human, open-label, phase I/IIa trial of DuoBody-PD-L1×4-1BB in advanced solid tumors (NCT03917381)

    Dynamo Simulations of Jupiter's Magnetic Field: The Role of Stable Stratification and a Dilute Core

    Get PDF
    Understanding Jupiter's present-day interior structure and dynamics is key to constraining planetary accretion models. In particular, the extent of stable stratification (i.e., non-convective regions) in the planet strongly influences long-term cooling processes, and may record primordial heavy element gradients from early in a planet's formation. Because the Galileo entry probe measured a subsolar helium abundance, Jupiter interior models often invoke an outer stably stratified region due to helium rain. Additionally, Juno gravity data suggest a deeper, potentially stratified dilute core extending halfway through the planet. However, fits to Jupiter's gravitational data are non-unique, and outstanding uncertainty over the equations of state for hydrogen and helium remain. Here, we use high-resolution numerical magnetohydrodynamic simulations of Jupiter's magnetic field to place constraints on the extent of stable stratification within the planet. We find that compared to traditional interior models, an upper stably stratified layer between 0.9 and 0.95 Jupiter radii (RJ) helps to explain both Jupiter's dipolar magnetic field and zonal winds. In contrast, an extended dilute core that is entirely stably stratified (no convective layers) yields significantly worse fits to both. However, our models with extended deep stratification still generate dipolar magnetic fields if an upper stratified region is also present. Overall, we find that a planet with a dilute core i.e., strongly stably stratified is increasingly challenging to reconcile with Jupiter's magnetic field and winds. Thus if a dilute core is present, alternative modalities such as a fully convective dilute core, a complex multilayered interior structure, or double diffusive convection may be required

    LY2495655, an antimyostatin antibody in pancreatic cancer: a randomized phase 2 trial

    Get PDF
    Background: Cachexia is a formidable clinical challenge in pancreatic cancer. We assessed LY2495655 (antimyostatin antibody) plus standard-of-care chemotherapy in pancreatic cancer using cachexia status as a stratifier. Methods: In this randomized, phase 2 trial, patients with stage II-IV pancreatic cancer were randomized to 300-mg LY2495655, 100-mg LY2495655, or placebo, plus physician-choice chemotherapy from a prespecified list of standard-of-care regimens for first and later lines of care. Investigational treatment was continued during second-line treatment. The primary endpoint was overall survival (OS). Results: Overall, 125 patients were randomized. In August 2014, 300-mg LY2495655 was terminated due to imbalance in death rates between the treatment arms; in January 2015, 100-mg LY2495655 treatment was terminated due to futility. LY2495655 did not improve OS: the hazard ratio (HR) was 1.70 (90% confidence interval, 1.1–2.7) for 300 mg versus placebo and 1.3 (0.82–2.1) for 100 mg versus placebo (recommended doses). Progression-free survival results were consistent with the OS results. A numerically higher HR was observed in patients with weight loss (WL) of ≥5% (cachexia) than with <5% WL within 6 months before randomization. Subgroup analyses for patients stratified by WL in the 6 months preceding enrollment suggested that functional responses to LY2495655 (either dose) may have been superior in patients with <5% WL versus patients with ≥5% WL. Among possibly drug-related adverse events, fatigue, diarrhea, and anorexia were more common in LY2495655- than in placebo-treated patients. Conclusions: In the intention-to-treat analysis, LY2495655 did not confer clinical benefit in pancreatic cancer. Our data highlight the importance of assessing survival when investigating therapeutic management of cachexia and support the use of WL as a stratifier (independent of performance status)

    The Role and Limitations of 18-Fluoro-2-deoxy-d-glucose Positron Emission Tomography (FDG-PET) Scan and Computerized Tomography (CT) in Restaging Patients with Hepatic Colorectal Metastases Following Neoadjuvant Chemotherapy: Comparison with Operative and Pathological Findings

    Get PDF
    BACKGROUND: Recent data confirmed the importance of 18-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in the selection of patients with colorectal hepatic metastases for surgery. Neoadjuvant chemotherapy before hepatic resection in selected cases may improve outcome. The influence of chemotherapy on the sensitivity of FDG-PET and CT in detecting liver metastases is not known. METHODS: Patients were assigned to either neoadjuvant treatment or immediate hepatic resection according to resectability, risk of recurrence, extrahepatic disease, and patient preference. Two-thirds of them underwent FDG-PET/CT before chemotherapy; all underwent preoperative contrast-enhanced CT and FDG-PET/CT. Those without extensive extrahepatic disease underwent open exploration and resection of all the metastases according to original imaging findings. Operative and pathological findings were compared to imaging results. RESULTS: Twenty-seven patients (33 lesions) underwent immediate hepatic resection (group 1), and 48 patients (122 lesions) received preoperative neoadjuvant chemotherapy (group 2). Sensitivity of FDG-PET and CT in detecting colorectal (CR) metastases was significantly higher in group 1 than in group 2 (FDG-PET: 93.3 vs 49%, P < 0.0001; CT: 87.5 vs 65.3, P = 0.038). CT had a higher sensitivity than FDG-PET in detecting CR metastases following neoadjuvant therapy (65.3 vs 49%, P < 0.0001). Sensitivity of FDG-PET, but not of CT, was lower in group 2 patients whose chemotherapy included bevacizumab compared to patients who did not receive bevacizumab (39 vs 59%, P = 0.068). CONCLUSIONS: FDG-PET/CT sensitivity is lowered by neoadjuvant chemotherapy. CT is more sensitive than FDG-PET in detecting CR metastases following neoadjuvant therapy. Surgical decision-making requires information from multiple imaging modalities and pretreatment findings. Baseline FDG-PET and CT before neoadjuvant therapy are mandatory

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Discovery and characterisation of two Neptune-mass planets orbiting HD 212729 with TESS

    Get PDF
    We report the discovery of two exoplanets orbiting around HD 212729 (TOI\,1052, TIC 317060587), a Teff=6146T_{\rm eff}=6146K star with V=9.51 observed by TESS in Sectors 1 and 13. One exoplanet, TOI-1052b, is Neptune-mass and transits the star, and an additional planet TOI-1052c is observed in radial velocities but not seen to transit. We confirm the planetary nature of TOI-1052b using precise radial velocity observations from HARPS and determined its parameters in a joint RV and photometry analysis. TOI-1052b has a radius of 2.870.24+0.292.87^{+0.29}_{-0.24} R_{\oplus}, a mass of 16.9±1.716.9\pm 1.7 M_{\oplus}, and an orbital period of 9.14 days. TOI-1052c does not show any transits in the TESS data, and has a minimum mass of 34.33.7+4.134.3^{+4.1}_{-3.7} M_{\oplus} and an orbital period of 35.8 days, placing it just interior to the 4:1 mean motion resonance. Both planets are best fit by relatively high but only marginally significant eccentricities of 0.180.07+0.090.18^{+0.09}_{-0.07} for planet b and 0.240.08+0.090.24^{+0.09}_{-0.08} for planet c. We perform a dynamical analysis and internal structure model of the planets as well as deriving stellar parameters and chemical abundances. The mean density of TOI-1052b is 3.91.3+1.73.9^{+1.7}_{-1.3} g cm3^{-3} consistent with an internal structure similar to Neptune. A nearby star is observed in Gaia DR3 with the same distance and proper motion as TOI-1052, at a sky projected separation of ~1500AU, making this a potential wide binary star system.Comment: Accepted to MNRAS. 11 page

    An Artemisinin-Derived Dimer Has Highly Potent Anti-Cytomegalovirus (CMV) and Anti-Cancer Activities

    Get PDF
    We recently reported that two artemisinin-derived dimers (dimer primary alcohol 606 and dimer sulfone 4-carbamate 832-4) are significantly more potent in inhibiting human cytomegalovirus (CMV) replication than artemisinin-derived monomers. In our continued evaluation of the activities of artemisinins in CMV inhibition, twelve artemisinin-derived dimers and five artemisinin-derived monomers were used. Dimers as a group were found to be potent inhibitors of CMV replication. Comparison of CMV inhibition and the slope parameter of dimers and monomers suggest that dimers are distinct in their anti-CMV activities. A deoxy dimer (574), lacking the endoperoxide bridge, did not have any effect on CMV replication, suggesting a role for the endoperoxide bridge in CMV inhibition. Differences in anti-CMV activity were observed among three structural analogs of dimer sulfone 4-carbamate 832-4 indicating that the exact placement and oxidation state of the sulfur atom may contribute to its anti-CMV activity. Of all tested dimers, artemisinin-derived diphenyl phosphate dimer 838 proved to be the most potent inhibitor of CMV replication, with a selectivity index of approximately 1500, compared to our previously reported dimer sulfone 4-carbamate 832-4 with a selectivity index of about 900. Diphenyl phosphate dimer 838 was highly active against a Ganciclovir-resistant CMV strain and was also the most active dimer in inhibition of cancer cell growth. Thus, diphenyl phosphate dimer 838 may represent a lead for development of a highly potent and safe anti-CMV compound
    corecore