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Abstract Understanding Jupiter's present-day interior structure and dynamics is key to constraining
planetary accretion models. In particular, the extent of stable stratification (i.e., non-convective regions) in the
planet strongly influences long-term cooling processes, and may record primordial heavy element gradients
from early in a planet's formation. Because the Galileo entry probe measured a subsolar helium abundance,
Jupiter interior models often invoke an outer stably stratified region due to helium rain. Additionally, Juno
gravity data suggest a deeper, potentially stratified dilute core extending halfway through the planet. However,
fits to Jupiter's gravitational data are non-unique, and outstanding uncertainty over the equations of state for
hydrogen and helium remain. Here, we use high-resolution numerical magnetohydrodynamic simulations of
Jupiter's magnetic field to place constraints on the extent of stable stratification within the planet. We find that
compared to traditional interior models, an upper stably stratified layer between 0.9 and 0.95 Jupiter radii (R )
helps to explain both Jupiter's dipolar magnetic field and zonal winds. In contrast, an extended dilute core that
is entirely stably stratified (no convective layers) yields significantly worse fits to both. However, our models
with extended deep stratification still generate dipolar magnetic fields if an upper stratified region is also
present. Overall, we find that a planet with a dilute core i.e., strongly stably stratified is increasingly challenging
to reconcile with Jupiter's magnetic field and winds. Thus if a dilute core is present, alternative modalities such
as a fully convective dilute core, a complex multilayered interior structure, or double diffusive convection may
be required.

Plain Language Summary Giant planets like Jupiter provide important clues to how the solar
system formed. Jupiter is often thought of as a dynamic and well-mixed ball of hydrogen and helium gas that
has been convectively cooling for billions of years. However, data from the NASA Juno Mission spacecraft
suggests large regions of the planet may actually be “stably stratified,” that is, not convective. Understanding
the extent of this process is important since it would affect how Jupiter's temperature cools over time, and may
challenge our ideas of how giant planets are formed. In this paper, we simulate the fluid dynamics of Jupiter's
interior to investigate two potential stable regions: (a) an upper region (potentially due to helium rain, where
helium and hydrogen separate like oil and water) and (b) a lower stratified region corresponding to the so-called
“dilute core,” which may extend halfway through the planet. We find that the upper stable layer helps explain
both Jupiter's magnetic field and winds. In contrast, the lower stratified region does not explain either unless the
upper stable layer is also present. Our results have implications for the present-day interior dynamics of giant
planets, as well as their past formation and evolution.

1. Introduction
1.1. Jupiter's Interior: A Relic of Planetary Formation

The formation and evolution of our solar system remains an outstanding question in planetary science (see
Helled and Morbidelli (2021) for a review). Clues to these processes, however, remain in the form of the pres-
ent day interiors of our planets (Helled et al., 2022). Variations on planetary formation pathways such as core
accretion (Pollack et al., 1996), pebble accretion (Johansen & Lambrechts, 2017), or disk instability; early solar
system conditions, and formation location will affect many physical properties such as the planet's heavy element

MOORE ET AL.

1 of 20

a 'TT ‘2202 ‘00166912

 wouy

52017 SUOLULIOD BAERID 2|1 [dde U} Aq peusenob a1e el VO ‘esn JO S8INJ 0} A%eig 178U IUO A8|IA UO (SUORIPUOD-PUB-SULIBYWI0Y" A3 | 1M AReJd U1 |UO//SHIL) SUORIPUOD PUe SIS L 8 885 *[£202/T0/60] U0 A%1q1T8UIIUO ABIIM “URWeS ZYjoUWRH "Q Ul UUed Wey "N-4n7T '3 WnnueZ ysid Ad 6220030220Z/620T OT/10p/wod A Im'A:


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3162-437X
https://orcid.org/0000-0001-5747-669X
https://orcid.org/0000-0003-0469-4401
https://orcid.org/0000-0001-9432-7159
https://orcid.org/0000-0002-1608-7185
https://orcid.org/0000-0001-5555-2652
https://orcid.org/0000-0002-7188-8428
https://orcid.org/0000-0002-7092-5629
https://orcid.org/0000-0002-9115-0789
https://doi.org/10.1029/2022JE007479
https://doi.org/10.1029/2022JE007479
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022JE007479&domain=pdf&date_stamp=2022-11-15

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Planets 10.1029/2022JE007479

distribution, and the amount of mixing that occurs over time. In this work, we will focus on the amount and extent
of stably stratified (non-convective) regions in Jupiter's interior. As we discuss below, stably stratified regions
play a key role in understanding some of Jupiter's largest outstanding questions, ranging from the planet's core
to the atmosphere.

One significant question of interest is the structure of Jupiter's core. For simplicity, researchers typically analyze
Jupiter's interior via a three-layer interior model (consisting of a small compact core of 0-20 Earth masses in
the planet's center, surrounded by a liquid metallic hydrogen shell and an outer atmospheric envelope) (Gudkova
& Zharkov, 1999; Guillot, 1999; Hubbard & Militzer, 2016). Since rock, ice, and iron are soluble in liquid
metallic hydrogen (Gonzélez-Cataldo et al., 2014; Wahl et al., 2013; Wilson & Militzer, 2011), the metallic
hydrogen shell may be enriched in heavy elements, in what is known as a “dilute” core. This heavy element
enrichment may be evenly mixed throughout the fluid shell, or it may be inhomogeneously distributed (Miguel
et al., 2022; Nettelmann et al., 2008). Recent analysis of Juno (Jupiter) and Cassini (Saturn) gravity data (Debras
& Chabrier, 2019; Guillot et al., 2018; Militzer et al., 2022; Movshovitz et al., 2020; Wahl et al., 2017) and
seismology data (Mankovich & Fuller, 2021) is highly suggestive of the gas giant planets having “fuzzy,” inho-
mogeneous dilute cores. Such cores may include heavy element gradients that extend throughout half the plan-
et's radius, possibly strong enough to be stably stratified against convection. Still, the persistent uncertainty in
the equations of state and non-uniqueness in the interpretation of gravity measurements, for example, Miguel
et al. (2016), Debras and Chabrier (2019), and Miguel et al. (2022), mean that a large range of core scenarios are
still possible.

The possible existence and dynamics of an inhomogenous, stratified dilute core are challenging to reconcile with
traditional planetary accretion theories (Helled et al., 2022). Conceivably, a dilute core could either be a relic of
formation (from initial mixing during formation or late-falling heavy elements), or due to erosion of the central
core during the planet's subsequent 4 billion years of evolution. However, formation and evolution models show
that either there is not enough initial energy to start dissolving the core at all, or there is too much energy and the
heavy element gradients are fully erased within a few million years of formation (Miiller et al., 2020). Explaining
the contrast between in situ planetary formation models and present-day gravity analysis may require turning to
alternative scenarios such as a giant impact (Liu et al., 2019) after Jupiter has cooled substantially, or migration
from a colder, heavy-element rich location at 10+ AU (Shibata & Helled, 2022). If a dilute core is indeed present,
the exact density gradients within it would provide key constraints on Jupiter's primordial accretion and subse-
quent evolution. Thus, finding additional methods to constrain the density gradients within Jupiter's interior is
essential to understanding the formation of our solar system.

In addition to the implications for Jupiter's core, the physics of hydrogen and helium at high pressures may lead
to additional regions of stable stratification within Jupiter. Specifically, as hydrogen transitions to a liquid metal
near the surface of the planet (~0.85-0.9 R, where 1 R, is Jupiter's radius), helium may become briefly insolu-
ble and rain out of solution (Stevenson & Salpeter, 1977). Physically, the heavier helium droplets sink inwards
(releasing gravitational energy), leaving behind a lighter layer of helium-depleted hydrogen. Depending upon the
amount of depletion, stably stratified region could develop, which would inhibit heat transfer from the deeper
interior. However, there is significant disagreement regarding the phase diagram of H/He immiscibility (Brygoo
et al., 2021; Fortney & Hubbard, 2003; Lorenzen et al., 2011; Morales et al., 2013; Schéttler & Redmer, 2018;
Stevenson & Salpeter, 1977), though these predictions broadly suggest it would occur at 1 Mbar or deeper, that is,
<0.86 RJ (Hubbard & Militzer, 2016; Mankovich & Fortney, 2020; Nettelmann et al., 2015) (see Figure 1). Still,
the uncertainties in the H/He phase diagram map onto a wide range of predictions for the onset timing and extent
of helium rainout (Mankovich & Fortney, 2020). Searching for and constraining the extent of stratification inside
of Jupiter is thus critical to modeling the planet's evolution—and ultimately, the processes driving its original
formation.

Finally, Juno gravity data has highlighted one last major puzzle for stratification within Jupiter. While it has long
been known that interior models require atmospheric heavy element abundances that are lower than protosolar
values unless ad hoc changes to the H/He equation of state are introduced (Hubbard & Militzer, 2016), this
issue has become particularly apparent with the increasing precision of the Juno gravity data and their coupling
to wind models. Perturbations of the H/He-adiabat (Nettelmann et al., 2021; Wahl et al., 2017), superadiabatic
or double diffusive regions (Debras & Chabrier, 2019), or artificially increased surface temperatures (Miguel
et al., 2022; Nettelmann et al., 2021) have been invoked. Those models commonly suggest that the outermost
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Figure 1. Predictions of helium de-mixing from H/He equations of state. We show the immiscibility curve of several
literature models (Morales et al. (2009): green line, Schéttler and Redmer (2018): blue line, and Brygoo et al. (2021): red
line) along with the associated data points and uncertainty bars, as well as a Jovian pressure-temperature curve (numbered
black line). For all models, H/He immiscibility begins at approximately 1 MBar or deeper (shaded region).

region of Jupiter is not simply adiabatic and convective. Independently Christensen et al. (2020), suggest the
presence of a convectively stable shell around 0.95-0.97 R, in order to explain the attenuation of the zonal wind
speeds there. However, this stable region is located shallower (closer to the planetary surface) than the region
commonly invoked for helium rain dissolution. Thus the source for a stably stratified region out at ~0.95 R,
remains an outstanding question.

1.2. Constraints From Jupiter's Magnetic Field

Above, we highlighted ongoing challenges between formation models and in situ gravity analysis. In this paper,
we attempt to resolve these open questions by drawing from a complementary discipline: the study of plane-
tary magnetic fields (dynamos). These fields are highly sensitive to many unique aspects of a planet's interior
structure; in particular, the morphology and time-variation of planetary dynamos are very sensitive to the flow
dynamics within a planet—including which regions are convective versus which are stably stratified. Thus, plane-
tary magnetic field studies are particularly well-suited to investigating the presence and extent of stably stratified
layers (SSLs) within Jupiter.

While Jupiter's magnetic field is primarily dipolar, the NASA Juno Mission has revealed additional complexity
that is challenging to explain. Specifically, the field has strong north-south asymmetry (Moore et al., 2018). It is
also dominated by a small number of regions with highly intense, localized field features such as the Great Blue
Spot (Connerney et al., 2018; Moore et al., 2017) which may be sheared by the planet's zonal winds over time
(Connerney et al., 2021; Moore et al., 2019). Previous dynamo models featuring an interior structure consisting
of a solid inner core and a fully convective hydrogen shell tend to result in magnetic fields that are either too
dipolar or too multipolar (Dietrich & Jones, 2018; Duarte et al., 2018; Jones, 2014). This is inconsistent with
the intermediate-level complexity in Jupiter's magnetic field as observed by Juno. Overall, this suggests the
need for alternative interior models, such as those with SSLs due to a dilute core (at the center of planet) and/or
helium-depleted hydrogen near the H/He phase transition region (shallower).

SSLs have been shown to significantly impact the morphology of planetary magnetic fields in three-dimensional
magnetohydrodynamic (dynamo) simulations. Specifically, a bottom liquid SSL has been shown to add complex-
ity to magnetic fields, possibly explaining the multipolar natures of the fields of Uranus and Neptune (Stanley
& Bloxham, 2004, 2006). Similarly, the possibility of upper stable stratification has been shown to be a plau-
sible mechanism for axisymmetrizing the magnetic field of Saturn (Stanley, 2010; Stevenson, 1982; Yan &
Stanley, 2021). However, these simulations were carried out in the Boussinesq approximation, which neglects
the effects of compressibility. This approximation may be valid for Earth, where pressure-dependent effects may
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Figure 2. Jupiter interior model properties. Blue lines represent the properties of the Jupiter reference background profiles used in our dynamo simulations, while gray
lines/dots represent the model of French et al. (2012) for comparison. Note that MagIC internally normalizes all interior quantities by the value at the outer boundary of
the spherical shell, except for electrical conductivity for which it uses the value at the inner boundary. We use a cutoff radius of 0.99 R,. (a) Density, (b) Temperature,
(c) Gravity, (d) Coefficient of thermal expansion, (e) Griineisen parameter, and (f) Electrical conductivity.

only be on order of 10%. However, these effects can be more significant for giant planets like Jupiter, where the
density varies by several orders of magnitude throughout the planet (See Figure 2).

The capability to model SSLs was recently incorporated into the open-source dynamo code, MaglC
(Gastine & Wicht, 2021); that work included a single proof of concept Jovian simulation in the anelastic
(compressibility-dependent) approximation, which demonstrated that stable stratification has a strong influence
on the dynamics of Jupiter's atmospheric jets and dynamo field. The specific stable layer simulated (~0.85-0.9 R))
resulted in a magnetic field that is too dipolar. Here we revisit this problem in more depth by testing a wider vari-
ety of layer placements, guided by hypotheses from Jovian interior structure and accretion models.

1.3. Overview

In this work, we perform state-of-the-art magnetohydrodynamic (MHD) simulations (dynamo models) of Jupi-
ter's magnetic field morphology to constrain the location and extent of stable stratification within the planet.
Specifically, we focus on two potential regions of stable stratification: (a) an upper stable layer (within the bounds
of 0.8-0.95 R)) and (b) a deep layer within 0-0.5 R,. While these features may be present in a variety of dynamical
forms—fully convective, layered convection, semi-convection, and/or SSL(s)—we specifically focus on the role
of stable stratification in this work, due to its profound implications for Jupiter's thermal evolution. Our goal is to
constrain Jupiter's present-day interior dynamics, in order to provide an important basis of comparison with the
results of accretion models. Of key interest is determining if a stably stratified dilute core needs to extend beyond
0.2 R, in order to explain Jupiter's magnetic field, which would pose a direct challenge to traditional planetary
formation scenarios (Miiller et al., 2020).
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2. Methods

We seek to numerically simulate the MHD processes of Jupiter's interior, including the generation of its dynamo
magnetic field and zonal winds. In particular, we model the extent of SSLs in the planet's interior, in order to
investigate the role of key hypothesized features such as a stratified, inhomogeneous dilute (“fuzzy”) core and
a hydrogen-helium immiscibility zone. Thus, we choose a cutting-edge, open-source numerical dynamo code,
MaglC (Gastine & Wicht, 2012; Jones et al., 2011), which recently added the capability to model the effects
of stably stratified fluid layers (Dietrich & Wicht, 2018; Gastine & Wicht, 2021; Gastine et al., 2020). MagIC
utilizes a pseudo-spectral approach with a poloidal-toroidal decomposition. The radial grid is determined by
zeros of a Chebyshev polynomial. This results in a higher density of grid points near the upper and lower bound-
aries of the fluid shell, in order to help resolve boundary layers. We describe the numerical setup of the problem
and our model parameter choices below.

2.1. Formulation of the MHD Problem
2.1.1. Background Reference Model

MagIC models the time-evolution of the dimensionless fluid velocity, u, and magnetic field, B, inside a spheri-
cal shell with rotation rate Q. Specifically, it solves the conservation equations for momentum (Navier-Stokes),
magnetic induction, and energy. The system is represented in terms of small perturbations around a static, spher-
ically symmetric background reference state, that is,

T/ / /
u’”@""pfl'"<<l (1)
Ty 1l 15l
We use the convention of tildes to represent the properties of the background state and primes to represent fluc-
tuations throughout. The background state quantities are in general non-dimensionalized by their values at the
outer boundary of the shell.

For most quantities, we use MaglIC's built-in Jupiter reference model, JUP (with adjustments to ensure dipolar
fields and force stable stratification, to be described). Overall this model is a polynomial fit approximation to the
adiabatic Jupiter interior model of French et al. (2012), which features a homogeneous, enriched envelope out to
0.63 R, (see Figure 2). Note that the original background interior model technically has an abrupt, discontinuous
jump in composition (Z and helium) and entropy, which would create an infinitesimally thin stratified region.
However, these effects are smoothed over by the polynomial fit, and are usually not modeled directly. The radially
varying electrical conductivity profile is super-exponential; see Figure 2. The outer boundary of our model is at
0.99 R, due to steep variations in the background profiles which are difficult to resolve numerically beyond this
radius. The variation in thermal conductivity in the French et al. (2012) profiles is limited to a factor of about
60 and is thus neglected, following Gastine, Wicht, et al. (2014) and Gastine and Wicht (2021). The electrical
conductivity (6(r)) profile from French et al. (2012) is shown in Figure 2f. It shows that the transition from a
highly conductive metallic region to a semi-conducting fluid region takes place around /R, ~ 0.9. To approxi-
mate this behavior, we use a formulation introduced in Gémez-Pérez et al. (2010),

¢
&(r)=1+(&m—1)<ﬂ> Y or<rm

Fm — i

r—r om—1 )
&(r)=&,,,exp[§r—'" <m~—>] Y r>rn.

m — Fi O

Thus, the interior is approximated as a combination of a nearly constant conductivity profile in the metallic
region followed by an exponential fall off. 5, is the electrical conductivity of the fluid at the transition radius r,,.
The conductivity is normalized to its value at the inner boundary of the simulation. We use values of ¢, = 0.2,
r, = 0.9, and £ = 13 for all our simulations.

2.1.2. Anelastic MHD Equations

Applying the reference state described in Section 2.1.1, we use the anelastic approximation of the MHD equations
(Braginsky & Roberts, 1995; Gilman & Glatzmaier, 1981; Lantz & Fan, 1999). In this formulation, the time rate
of change of density perturbations relative to the background state is assumed to be small compared to changes in
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the velocity—that is, sound waves are filtered out. Resolving sound waves in our models would require substan-
tially higher time-resolution, and is not required for the goals of our study. The resulting anelastic equations are:
V.(pu)=0 (3)
V-B=0 “
Du 2 r 1 Ra_~ , 1
—+ —e,Xu=-V| = VxB)xB - —aT =V-S
Dr TEC Y <ﬁ>+EkPmﬁ( ) pro 8t )
@=Vx<uxB—iVxB) ©)
ot Pm
- ( Ds' ds 1 = PrDi
pT | =— +u,— | = =—V - (pTVs' v
7 <Dt+udr> 5oV (PTVS') + = (. +02) !
where D/Dt = 9/t + u -V is the material derivative. S is the traceless rate-of-strain tensor:
1 aui
Sii=2plej—s—
J P (e 77 3 ox, > ®
1 du,- auj
=5 |+ —
€ 2 < 0x j dxi ) (9)
and Q, and Q, are the viscous and Ohmic heating terms, respectively:
< 1 2
v=2 ijeji— = (V-
0 p[%‘,e,ej 3¢ u)] (10)
0, = i’ (1)
"~ ExPm??
In the above equations, length is non-dimensionalized using the spherical shell thickness, d = r, — r,, times-
cale has been non-dimensionalized by the viscous diffusion time d*/v, the velocity by v/d, the magnetic field
by \/Quo4lip,, and the entropy perturbations by dlds/drl at the outer boundary of the shell. We also use the
non-dimensional parameters:
Rayleigh,
OTU 0d4
Ra = Folo8od ﬁ (12)
cvk  |dr|,
Ekman,
v
Ek = —
Qd? (13
Prandtl,
\2
Pr = —
r=— (14)
the magnetic Prandtl number,
v
Pm= —
m= (15)
and the dissipation number, Di,
. d
Di= M (16)
Cp
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The final system of equations is solved directly for the 3D fluid velocity and magnetic fields as a function of time,
given the initial background profile and a small initial random perturbation.

2.2. Stable Layer Implementation

MaglC currently provides the functionality to model planetary dynamos with SSLs. Our description of the meth-
odology used in MagIC closely follows that of the anelastic Jovian study, Gastine and Wicht (2021). Mathemat-
ically, MagIC implements SSLs by modifying the background entropy gradient, ? to allow for non-adiabatic
reference states (perturbations are assumed to be small to preserve the validity of the anelastic approximation).
An SSL is created by setting the entropy gradient to a constant value relative to the background reference state,

ds

=T 1
dr a7

where I'| is the “degree of stratification,” and is set as a free parameter. Effectively, this forces stable stratifica-

tion in regions where the entropy gradient, ? > 0. The degree of stratification is related to the Brunt-Viisild
r

frequency in the stable layer by

RaEk? (18)

N _ max \/a(r)T(r)g(r) I
- Pr

Q

A constant dimensionless entropy gradient of ? = —1is imposed in the surrounding convective regions.
p

The entropy gradient of the SSL is connected smoothly to the surrounding regions with a hyperbolic tangent func-
tion. The current version of MagIC allows for SSLs to be placed either at the outer boundary of a spherical fluid
shell or somewhere in the interior of the planet (i.e., sandwiched between two regions of convective fluid; see

Figure 3b). For an SSL extending from non-dimensional radii 7, + h] (where h is the non-dimensional

strat tO [r

strat
thickness), the two gradients are smoothly connected as follows:

g = 1 'ZFS [1 4+ tanh (s (r = Fgrar))] [1 — tanh (& (r — Fgpar — h))] — 1 (19)

where (_ is the stiffness of the transition between the stably stratified and convective layers.

In addition to utilizing the existing functionality for interior (sandwiched) stable layers (also referred to as “upper”
layers in this paper, due to their simulated location within Jupiter), we added new functionality to the code to
enable simulation of SSLs extending all the way to the bottom of the fluid shell (see Figure 3c). We parameterize
this new option for a bottom stable layer similarly to the above. Here the planet is assumed to have a stable layer
extending between the inner boundary and r,, .. Note that whereas in the sandwich-stratification case r, repre-
sented the bottom boundary of the layer, here it represents the upper boundary. This choice was made to minimize

modifications to the shared community code.

Just as above, the bottom-stratified layer implementation is defined by a constant positive entropy gradient

throughout (f = FS>, and the overlying convective layer has a constant dimensionless entropy gradient of

% = —1. The two gradients are smoothly connected as follows:

s _p _1+L
dr 2

[1 — tanh (&, (Fyrar — 1))] (20

While somewhat ad hoc, forcing stratification is standard in the solar and planetary fluid dynamic literature,
and provides a controlled way to examine the effects of stratification on the resulting flows generated inside the
planet. (See Takehiro and Lister (2001) and Gastine et al. (2020) for implementation in geodynamo models, and
Dietrich and Wicht (2018) for an application to Saturn). We note that this approach also approximates the planet
as a single-component fluid, when in reality the stratification would likely be due to chemical gradients of multi-
ple components including H, He, and heavier elements in the planet.
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Figure 3. Illlustrations of numerical experiment cases. (a) Baseline control model: a fully convective (traditional) interior structure featuring a compact central core.

(b) A model featuring an upper stably stratified layer (SSL). (c) A “Dilute Core” model featuring an extended core region (consisting of a solid inner core from 0 to

0.2 R, for numerical stability, with an overlying liquid SSL). (d) A “Combo DC/UP” model featuring both an upper SSL and a dilute core with extended stably stratified
regions. With the exception of the solid inner core, the exact placement and thickness of each layer in this study varies by specific model case.

2.3. Jovian Numerical Experiments

Using MaglC, we perform several numerical experiments to explore the dynamics of Jupiter's interior. Our exper-
imental design is largely influenced by the nature of dynamo modeling, which is extremely computationally
expensive. This is especially true at the resolution levels required to model the pressure-dependent interiors of
giant planets. Thus, we perform a tightly focused study.

Since we can only perform a limited number of simulations due to computational resource constraints, we focus
our experiments on a small number of parameters. Several previous studies have already explored the effect of
various non-dimensional fluid dynamic parameters such as the Rayleigh number (Ra), Ekman number (Ek),
Prandtl number (Pr), magnetic Prandtl number (Pm), and Rossby number (Ro); as well as the broader effects of
the background interior models (ranging from idealized polytrope number to more “realistic” Jupiter interiors
like that of French et al. (2012)); and the role of different electrical conductivity profiles (i.e., different metali-
zation depths/drop-off rates) and heating models (internally heated vs. top-down cooling). Thus, we rely on the
important conclusions those authors have derived (see Duarte et al. (2018) for a review), and do not repeat those
parameter surveys here. Instead, we focus on the effect of large-scale changes to Jupiter's interior structure: the
role of stable stratification due to a possible dilute core and/or helium rainout. See Table 1 for a list of our numer-
ical dynamo simulation cases.

2.3.1. Baseline Control Models

To understand the effect of these new possible interior structures, we first perform a single “dipolar baseline”
control model run using a traditional Jupiter interior structure (a solid compact core from 0 to 0.2 R, and no
stratified regions), similar to the models of Duarte et al. (2018); see Figure 3a. The cutoff radius of 0.2 R,
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Table 1
Overview of Dynamo Simulations
Model name Solid core radius (R)) SSL (R) NIQ I, Magnetic field morphology Lowes spectrum RMSLE
Dipolar baseline 0.2 N/A N/A N/A Dipolar 0.70
Multipolar baseline 0.2 N/A N/A N/A Multipolar 3.22
Dilute core 0.25 0.2 0.2-0.25 10.01 1500 Multipolar 2.97
Dilute core 0.3 0.2 0.2-0.3 10.04 1300 Multipolar 2.90
Dilute core 0.4 0.2 0.2-0.4 10.00 980 Multipolar 2.67
Dilute core 0.5 0.2 0.2-0.5 10.09 800 Multipolar 3.83
Solid dilute core 0.4 0.4 N/A N/A N/A Multipolar 2.65
Upper SSL 0.80-0.85 0.2 0.80-0.85 9.10 450 Dipolar 1.44
Upper SSL 0.85-0.90 0.2 0.85-0.90 9.13 530 Dipolar 0.63
Upper SSL 0.90-0.95 0.2 0.90-0.95 9.08 310 Bistable 0.41 (D)
1.89 (M)
Upper SSL 0.80-0.90 0.2 0.80-0.90 9.10 450 Dipolar 1.30
Upper SSL 0.85-0.95 0.2 0.85-0.90 9.79 360 Dipolar 0.62
Upper SSL 0.80-0.95 0.2 0.80-0.95 9.79 360 Dipolar 1.27
Combo DC/UP 0.80-0.85 0.4 0.80-0.85 9.10 450 Multipolar 2.09
Combo DC/UP 0.85-0.90 0.4 0.85-0.90 9.13 530 Dipolar 0.77
Combo DC/UP 0.90-0.95 0.4 0.90-0.95 9.08 310 Multipolar 2.76
Combo DC/UP 0.80-0.90 0.4 0.80-0.90 9.10 450 Multipolar 2.15
Combo DC/UP 0.85-0.95 0.4 0.85-0.95 9.79 360 Multipolar 2.24
Combo DC/UP 0.80-0.95 0.4 0.80-0.95 9.79 360 Dipolar 1.78

Note. Here we provide a list of dynamo simulations in our case study. The models are of four classes (aligned with Figure 3): fully convective models (“baseline”),
models featuring an upper SSL (“Upper SSL”), models with a stably stratified dilute core (“Dilute core”), and combination models with both an upper and lower stably
stratified regions (“Combo DC/UP”). While the table highlights parameters that differ between models, many parameters are the same across simulations. For example,
all of our models use non-dimensional fluid parameter values of Ra = 8 X 107 (except the multipolar baseline model which uses Ra = 1.8 x 10%), Ek = 104, Pr = 1,
Pm = 3, and a simulation upper cutoff radius of 0.99 R,. All simulations use a grid resolution of N, = 161, N, = 384, and N, = 768 grid points in the radial, meridional,
and azimuthal axes respectively. Models including a stably stratified layer use a stratification slope of { = 130. The degree of stratification, I";, was fixed to give a
maximum N/ ratio of approximately 10 in the stratified layer. Here RMSLE stands for root mean square log error.

was specifically chosen as the maximum radius considered plausible by traditional accretion models (Miiller
et al., 2020). Our dipolar baseline model uses a Rayleigh number Ra = 8 x 107, Ek = 107, Pr = 1, and Pm = 3.
This model was based on Case 34 of (Duarte et al., 2018), but with a slightly higher Rayleigh number. We also use
a grid resolution of N, = 161, N, = 384, and N, = 768 grid points in the radial, meridional, and azimuthal direc-
tions respectively, leading to a maximum spherical harmonic degree [, = 256. All of our simulations also used
these same simulation control properties, with the exception of the Rayleigh number for our multipolar baseline
model. We chose to keep most values the same in each simulation, and focused on varying the core radius, and

the locations and thicknesses of SSLs.

We acknowledge the common concern that computational restrictions require an unphysically large Ekman
number for planetary studies (i.e., too viscous). Some works have hinted at the possibility of different dominant
force balances only seen at lower Ekman numbers (Yadav et al., 2016); whether this is consistently the case
remains to be seen. However, stably stratified models require significantly higher grid resolutions than traditional
compact core models, and so reaching these low Ekman numbers is an even greater challenge here. We choose
instead to perform a broader suite of models with a higher Ekman number (Ek = 10~#) that is commonly used
in the literature. This represents a balanced approach, and allows us to easily compare the effects of our stably
stratified models with both our baseline models and previous models produced by the scientific community.

Our baseline simulation was consistently dipolar for the entire run time period. This baseline model was then used
as the initial checkpoint for our simulations with SSLs. We also perform a “multipolar baseline” control model
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using identical parameters as the dipolar baseline, with the exception of a higher Rayleigh number (1.8 x 10%) to
yield a multipolar model.

2.3.2. Dynamo Models With Stratified Interiors

After creating our baseline comparison models, we perform a series of dynamo simulations featuring a stably
stratified dilute core (referred to here as “Dilute Core models” throughout the text, although in reality dilute cores
need not be stratified). Our models are simulated as a solid inner core from 0 to 0.2 R, with a fluid stably strati-
fied region overlying the solid inner core (see Figure 3c); the presence of the inner core provides our models with
numerical stability. Specifically, we simulate models with total non-convective core radii (solid inner core plus
liquid SSL) out to 0.25, 0.3, 0.4, and 0.5 R,. We performed exploratory simulations with bottom SSLs extending
to even higher radii, but the initial results of these simulations were too similar to our other stratified dilute core
models to justify the additional expenditure of computational time within our limited parameter study. Overall,
our dilute core cases provide a strong contrast with our baseline cases, which only have a total core radius of
0.2 R—the maximum radius permitted by traditional accretion models (Miiller et al., 2020). As a control, we
also perform a simulation with a large, entirely solid core (i.e., no SSL) ranging from 0 to 0.4 R,. We note that
while we only test the case of a dilute core that is entirely non-convective here (i.e., solid or stably stratified across
the entire volumetric region), additional geometries such as multilayered or fully convective dilute cores may be
possible (Militzer et al., 2022).

For all of our dilute core models, the extent of the SSL was chosen first, and then the degree of stratification was
set inside that region to yield a maximum Brunt-Viisild frequency N/Q = 10 in the stratified region. This value
was used so as to be directly comparable to the case by Gastine and Wicht (2021). While the true value inside
Jupiter may be closer to 1-3 for upper SSLs depending upon the interior model chosen (see Miguel et al. (2016),
Debras and Chabrier (2019), and Gastine and Wicht (2021) for details), the increased stiffness of the SSL helps
balance out the effect of the artificially enhanced viscosity in dynamo models due to numerical limitations. We
did perform initial probing studies using a more weakly or strongly stratified dilute core (M/Q ~ 0.5 or 100,
respectively). Models with higher values of N/ appear to have stronger propagation of internal gravity waves
in the core, which could have implications for observations of the planet's interior modes by the Juno spacecraft
or telescopic observatories. However, the degree of stratification in the dilute core did not significantly impact
the primary concern of our study—the morphology of the magnetic field at the planetary surface—so we do not
consider it further here.

We also performed simulations featuring an upper SSL (“Upper SSL” models). Our experiments explored layers
with thicknesses of 0.05, 0.1, and 0.15 R, (between 3,500 and 11,000 km in thickness), and a variety of depths
(such that the layer was fully encompassed within the radial region between 0.8 and 0.95 R; see Figure 3b).
An upper SSL may be caused by helium rainout near the outer boundary of the dynamo region. In such case,
the layer thickness and depth would be directly determined by the planet's temperature, pressure, and electrical
conductivity profiles. However, the H/He mixing phase diagram has sufficient uncertainty that we treat these
values as free parameters, both for exploring Jupiter's magnetic field as well as gaining general insight about the
effects of SSLs in giant planets. We note that an outer extent of 0.95 R, for He rainout is shallower than predicted
by all current H/He phase diagrams, but we include it here as an outer bound due to suggestions from previous
magnetic field analyses that it is a radius of interest (Christensen et al., 2020; Moore et al., 2019). We discuss the
interesting contrast between the locations of possible stratified layers suggested by high pressure physics models
of hydrogen-helium gradients versus evidence from other disciplines like seismology and magnetic field analysis
more in Section 4; it is possible that multiple processes causing stable stratification may be at play.

Finally, we performed combination simulations of models including both an extended dilute core and an upper
SSL (possibly due to helium rain); see Figure 3d. Such models are denoted as “Combo DC/UP” models through-
out the text. The upper layers in these cases were simulated identically to those described above, while the dilute
core region was modeled as a large solid inner core for simplicity. This choice is justified by our results (See
Section 3), which find no significant differences in field morphology between dilute core models with a purely
solid inner core versus those with a bottom SSL.

We note that we have chosen to idealize the possible dilute core within Jupiter as a stratified layer over-
lying a small compact core (or, for comparison, as a large and entirely solid core region), and the hypothe-
sized helium immiscibility zone as an upper stratified layer. In reality, the dynamics of these features may be
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further complicated by alternative processes such as layered convection (Moore et al., 2018), marginal stability,
or semiconvection/double-diffusive convection (Leconte & Chabrier, 2013; Nettelmann et al., 2015), that is, a
region that is compositionally stable but thermally unstable. Consideration of these processes is beyond the scope
of our current study, but would be a fruitful and important direction for future research in the field.

3. Results

In this study, we explore whether adding complexity to Jupiter's interior structure (i.e., a stably stratified dilute
core and/or a possible helium rainout zone) could help explain the planet's observed magnetic field morphology.
That is to say, we seek a “Goldilocks” or intermediate dynamo model—whereby starting with a dipolar baseline
case and adding new interior features, we manage to add a small amount of necessary complexity to bridge the
two end-member regimes.

We primarily focus on the broad implications of time-averaged properties (details are described below). Planetary
dynamo models are turbulent and may vary strongly in time; similarly, observational data has also found evidence
of time-variation in Jupiter's actual magnetic field (Moore et al., 2019). Working with averaged quantities helps to
prevent biased conclusions from possibly unrepresentative “snapshots” of the field at isolated moments in time.
Resolving the time-dependence of features such as isolated flux spots like the Great Blue Spot in a statistically
meaningful manner requires longer simulation run times and is computationally expensive; we hope to follow up
on our promising candidate models in a future study.

3.1. Magnetic Field Morphology

First, we examine the magnetic field morphology of our numerical simulations. A planet's dynamo magnetic field
at the surface can be represented as a potential field, V, with degree / and order m spherical harmonic coefficients,
g/"and A"

b 1
V=g ; (%) Y P/(cos 0) [g]' cos(me) + A" sin(mep)] @1

m=0
where V is a function of position relative to a planetary reference radius, a (in our case, a = 1 R, = 71,492 km).

3.1.1. 1D Power Spectra

Using the field coefficients at the outer boundary of our fluid dynamics simulations (0.99 R)), we find the
time-averaged Lowes power spectrum (Lowes, 1966) to compare the total power, R,, at each spectral degree:

urs L

> () + ()] @)

m=0

R =(1+1)(§)

The Lowes power spectrum is commonly used to estimate the location of the surface of a planetary dynamo by
assuming that the dynamo source emits power as a flat spectrum, and finding the distance to this source region
that best-fits the power spectrum of the observed field. This is based on geometric reasoning: the further one
is from the source generating region, the more strongly higher order terms in the potential field expansion will
decay relative to lower order terms (i.e., “all things resemble a dipole when observed from a far enough distance”,
see Equation 21). Using this method on Juno-derived magnetic field models, one would estimate that Jupiter's
convective dynamo extends to between 0.81 and 0.85 R, (Connerney et al., 2018, 2021; Sharan et al., 2022).

This method provides an excellent first approximation, but is largely empirical in nature and primarily informed
by studies of Earth's magnetic field. There are no first principles requirements for dynamos to emit at a flat
spectrum, and the “dynamo surface” may be poorly defined for fluid planets such as Jupiter which have radially
varying conductivity profiles and possibly intricate, multilayered interiors. By performing a suite of 3D MHD
simulations, we can compare the data-derived power spectrum to the specific spectra resulting from a range of
realistic scenarios for Jupiter's interior.

After initializing each dynamo model from our dipolar baseline checkpoint file, we allowed the simulations to
stabilize for 0.9 viscous diffusion times (0.3 magnetic diffusion times for Pm = 3, similar to other works). Then
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Figure 4. Time-averaged Lowes power spectrum. We compare the time-averaged Lowes power spectra of our dynamo models to the Juno JRM09 model (Connerney
et al., 2018). All spectra have been normalized to the power in the dipolar term. We also show the power spectrum of Earth's dynamo field using the IGRF-13 model for
comparison (Alken et al., 2021). (a) Dilute core models. (b) Upper stably stratified layer (SSL) models. (c) Combination models with both an extended, stably stratified

dilute core and an upper SSL.

we calculated the time-averaged Lowes spectrum for the remainder of the simulation period, normalized to the
power in the main dipole. We note that all dipolar models in our study were relatively steady, while all multipolar
models underwent frequent reversals.

Figure 4 compares the resulting power spectra of our dynamo simulations (colored lines) to the JRM09 magnetic
field model (Connerney et al., 2018) derived from Juno spacecraft observations (black line), and is summarized
in Table 1. We also show Earth's power spectrum using the IGRF-13 model for comparison (Alken et al., 2021).
Earth's power spectrum has a much faster falloff with degree than Jupiter's due to the deeper depth of its dynamo
region relative to planetary radius (~0.55 R vs. ~0.85-0.95 R)). Our dipolar and multipolar baseline models
reproduce the two end-member regimes observed in the literature for compact core models, as expected. In
particular, our choice of dipolar baseline model is a surprisingly reasonable fit to the power spectrum of JRMO09,
although it has a significant mismatch in the power of the quadrupolar term.

3.1.1.1. Dilute Core Models

Like traditional compact core models, models including SSLs still appear to fall into the end-member extremes of
highly dipolar or highly multipolar morphologies. Past dynamo modeling studies of Uranus and Neptune's inte-
riors in the Boussinesq limit (Stanley & Bloxham, 2006) had found that larger inner core sizes lead to increased
field complexity; models with intermediate shell thickness somewhat resembled Jupiter's field. Thus, we had
initially expected that the inclusion of a non-convective dilute core region of the correct radius could lead to a
case with intermediate morphology, but our results do not support that hypothesis. Instead, our non-convective
dilute core models unanimously yield multipolar magnetic field morphologies (red/orange/yellow lines in
Figure 4). This was true for all radial extents of the non-convective dilute core examined here, with larger dilute
cores generally having worse root mean square log errors to the JRMO09 power spectrum than smaller ones (See
Table 1). Note that we did not consider interior structures with convective dynamics such as multi-layered dilute
cores or double diffusive convection.

While previous studies found that dynamo models in the Boussinesq approximation are sensitive to the difference
between a liquid stably stratified core and a solid inner core of the same radius (Stanley & Bloxham, 2004, 2006),
no significant difference in field morphology was observed in our anelastic simulations. This is likely because
the large number of density scale heights traversed in our anelastic Jupiter simulations reduces the models' overall
sensitivity to the specific nature of the deep bottom boundary, aside from the general aspect ratio of the convec-
tive region. Overall we find that a fully stably stratified dilute core alone does not appear to explain Jupiter's
unusual magnetic field (Moore et al., 2018).

MOORE ET AL.

12 of 20

a 'TT ‘2202 ‘00166912

 wouy

52017 SUOLULIOD BAERID 2|1 [dde U} Aq peusenob a1e el VO ‘esn JO S8INJ 0} A%eig 178U IUO A8|IA UO (SUORIPUOD-PUB-SULIBYWI0Y" A3 | 1M AReJd U1 |UO//SHIL) SUORIPUOD PUe SIS L 8 885 *[£202/T0/60] U0 A%1q1T8UIIUO ABIIM “URWeS ZYjoUWRH "Q Ul UUed Wey "N-4n7T '3 WnnueZ ysid Ad 6220030220Z/620T OT/10p/wod A Im'A:



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Planets 10.1029/2022JE007479

3.1.1.2. Upper SSL Models

In contrast to the multipolar dilute core models, our models implementing an upper stably stratified region occur-
ring somewhere between 0.8 and 0.95 R, (Figure 3b) are primarily dipolar (Figure 4b). We find that the Lowes
power spectrum appears to be strongly correlated with the location of the stable layer: shallower layers have
stronger contributions from higher order terms. This trend can be explained by the stable layer's ability to change
the effective “depth of the dynamo surface.” In MHD simulations of Jupiter with a fully convective interior, dipo-
lar dynamos are confined to deeper regions of the planet due to competition with the zonal winds (while multipo-
lar dynamos are generated in more shallow regions) (Duarte et al., 2018). Here we find the stable layer provides a
buffering separation zone between Jupiter's convective dynamo and its strong zonal winds, allowing for a dipolar
dynamo to extend to shallower depths than might otherwise occur in the presence of strong zonal winds.

Unlike the layer placement, changing the thickness of an upper stable layer due to helium rain did not appear to
affect the Lowes power spectrum significantly (see Figure 4b). Layers from 0.8 to 0.85, 0.8 to 0.9, and 0.8 to
0.95 R, all have nearly identical power spectra, as do the layers from 0.85 to 0.9 and 0.85 to 0.95 R,. Overall we
find that the location of the bottom of the stratified layer—and not the layer thickness—appears to be the primary
determining factor of the dynamo's power content. This is consistent with interpreting the power spectrum in
terms of geometric distance from the primary source of field generation: the convective dynamo region. We also
note that from the perspective of the magnetic Reynolds number, the bottom of an upper stable layer is likely
where advective shearing of the electromagnetic field would be strongest due to the increased electrical conduc-
tivity, although this effect would also depend upon the rate of decay of fluid velocity with depth.

3.1.1.3. Combination Models

While all of our original dilute core models are multipolar, combination models that have both an extended dilute
core region and an upper stable layer (Figure 3d) produce both dipolar and multipolar morphologies, depending
upon layer placement (Figure 4c). As a reminder, our previous results found no significant difference between
a large, extended core that is entirely solid (0-0.4 R)) versus a core consisting of a smaller solid inner core with
an overlying liquid stably stratified core (0-0.2 and 0.2-0.4 R, respectively). Thus for numerical convenience,
our combination models simulate the dilute core region as a larger solid core extending from 0 to 0.4 R,. We find
that combination models with dipolar magnetic fields closely reproduced the original power spectrum of these
models when only an upper stable layer was included (see Figures 4b—4c, models with stable layers at 0.85-0.9
and 0.8-0.95 R)). However, other combination models were entirely multipolar. This likely represents that there
is a close tipping point between dipolar and multipolar dynamo modes (as found in other studies, e.g., Duarte
et al. (2018)), and that the exact placement and thickness of the stable layer(s) can push this balance one way or
the other, depending upon the resulting convective aspect ratios. While bistability was not explicitly observed in
any of our combination model simulations, we cannot fully rule it out either.

3.1.1.4. Best-Fitting Model

Our best-fitting model has an upper SSL extending between 0.9 and 0.95 R, and a traditional compact core from
010 0.2 R, (Figure 3b, not to scale; see also the medium blue solid line in Figure 4b). It provides an excellent fit to
the normalized JRMO09 power spectrum, with near exact fits to the quadrupole and octupole terms. The fit of our
upper SSL model is significantly better than our baseline dipolar compact core model (root mean square log error,
or RMSLE, of 0.41 vs. 0.70). More generally, all upper SSL models with a bottom boundary starting at 0.85 R, or
shallower provide a better fit to JRMO09 than the dipolar baseline model. The best-fitting model's power spectrum
is smoother than JRMO09, which can be explained by the time-averaged nature of our model (since JRMO09 only
represents the Jovian field at a specific snapshot in time).

Interestingly, our best-fitting model is also bistable. That is, it stochastically switches between a non-reversing
dipolar and a reversing multipolar regime (see Figures 4 and 5). While atypical for Earth-like models, bistability
is a commonly observed phenomenon in anelastic dynamo models of giant planets (Duarte et al., 2018). This is
usually thought to be due to competition between the planet's dynamo magnetic field and the zonal winds. We
find here, however, that this bistable competition is still observed on rare occasions even when a SSL is added as
a buffer between the dynamo and the zonal winds.
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Figure 5. Bistability of model Upper stably stratified layers 0.9-0.95 R,. (a) The blue line shows the dipolarity of the axial dipole at the outer boundary of the fluid
shell. The model stochastically switches back and forth between dipolar and multipolar states. To separate these two modes more quantitatively, we apply a cutoff
dipolarity value of 0.5 (orange line), where high dipolarity signifies a dipolar state. As with our other models, the first 0.9 viscous diffusion times of the simulation are
not used in our analysis in order to allow the model to adjust from its dipolar baseline initialization state. (b) The transitions between dipolar and multipolar states are
clearly demonstrated by the dynamo's pattern of polarity reversals. Our dipolar Jovian models consistently have steady magnetic polarity, while the multipolar models

undergo frequent reversals.

3.2. Zonal Wind Profiles

Explaining Jupiter's atmospheric zonal wind profile alone has proved to be a decades long challenge in geophysi-
cal fluid dynamics and atmospheric science. Producing a Jovian model that has both reasonable winds and a dipo-
lar dynamo simultaneously is an even larger challenge, due to competition between the winds and the dynamo.
While the primary goal of our study is to understand the role of stable layers on the morphology of Jupiter's
magnetic field, our fluid dynamic simulations also provide important insights on this secondary indicator, since
our models encompass almost the full radial extent of the planet.

Previous dynamo studies implementing a compact core have typically found it challenging to simultaneously
produce a dipole dominated surface field and a Jupiter-like profile of alternating zonal winds (Dietrich &
Jones, 2018; Duarte et al., 2013, 2018; Gastine, Wicht, et al., 2014; Heimpel & G6émez Pérez, 2011; Jones, 2014).
Our present study is in agreement with recent studies which have suggested that having a SSL between the
highly conducting and non-conducting regions of a simulation helps in overcoming this obstacle (Christensen
et al., 2020; Gastine & Wicht, 2021).

We find that models featuring thin, upper stable layers (possibly due to mechanisms such as helium rain) provide
largely improved fits to Jupiter's time-averaged zonal winds (See Figures 6h—6k). The width of the prograde jet
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Figure 6. Time-averaged surface zonal winds. We compare the normalized, time-averaged zonal winds of our dynamo models at the outer boundary of the fluid shell,
0.99 R, (colored lines). We also show the standard deviation of the normalized winds (gray shaded region), and cloud-tracking observations of Jupiter's surface zonal
winds from December 2016 (approximately coincident with Juno perijove 3; thick black line) (Tollefson et al., 2017).

shrinks slightly in latitude to more closely match Jupiter's observed winds, and some models even start to repli-
cate the weak retrograde jets near 20-30° latitude. While the wind morphology of combination models (featuring
both a dilute core and upper stable layer) is slightly more varied across models, they provide similarly good fits
to the observed winds (see Figures 6n—6s). This again suggests that an upper stable layer helps offset the issues
caused by a stratified dilute core.

When the upper SSL is made too thick, however (e.g., 0.1-0.15 R ; Figures 6k—6m), an unrealistically strong high
latitude jet appears to dominate. At the extremes, the models become highly time-varying (large standard deviation),
and the equatorial prograde jet is lost entirely. It is possible that these effects are an artifact of treating the stable
layer thickness as a free parameter, when in reality it is a function of the conductivity profile. While computational
limitations enforced a small parameter suite on our study, this is a rich topic for a follow-up exploration future work.

4. Discussion

In this work, we performed advanced numerical MHD simulations of Jupiter's interior, investigating the exist-
ence and extent of stably stratified regions within the planet. Specifically, we investigated stratified regions
representing the effects of a possible dilute core and/or an upper stably stratified region—features postulated
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by gravity observations and high pressure physics studies, and key to testing hypotheses of Jupiter's formation.
Previous fully convective dynamo studies with only a compact core display a strong dichotomy of too-dipolar or
too-multipolar magnetic field morphologies. Our hope was that by adding the correct combination of layer place-
ment and thicknesses to Jupiter's interior, we would identify a dynamo model that better explains field models
produced from Juno spacecraft observations.

Indeed, we find that an upper SSL does help to explain Jupiter's observed features. Such layers produced dipolar
field morphologies; layers with bottoms at 0.85 R, or shallower produced better fits to Jupiter's observed power
spectrum than our compact core baseline model, with the shallowest layers having the best fit of all. These models
also provide slightly enhanced fits to the planet's zonal winds. Our results are consistent with trends found from
dynamo explorations of Jupiter's possible conductivity profile with a compact core (Duarte et al., 2018), which
also favor shallower metalization depths. Since the dynamics of hydrogen-helium immiscibility and resulting
density gradients/stratified layers are intimately linked to the metalization of hydrogen, this paints a cohesive
picture of the planet's interior structure and dynamics.

In contrast, we find that an extended, stably stratified dilute core alone does not appear to explain Jupiter's field.
Our stably stratified dilute core models only produced multipolar magnetic fields, and yielded zonal wind profiles
with too thick of a prograde jet. Thus, we find that stratified dilute core models (without any additional layering)
are outmatched by fully convective/compact core models in all respects, which are usually able to somewhat
match Jupiter's observed winds or observed field but not both. We also find that whether the “stratified” dilute
core is fully solid or a stably stratified liquid does not appear to make a difference in the anelastic dynamo limit;
while we present stratified dilute core simulations out to 0.5 R, here as part of our tightly focused case study,
we also performed shorter exploratory studies out to higher radii and still found the results to be consistently
multipolar.

When a stratified dilute core is present in combination with an upper SSL, however, these problems are partially
resolved. While most combination models were multipolar, dipolar cases could still be found. Additionally, the
planet's zonal wind profiles improved as well, yielding thinner equatorial jets more consistent with Jupiter's
ground-truth.

We caution that while our evidence is strongly against the specific interior model of a stably stratified dilute core
that is entirely non-convective and with no upper stable layer, more research will be required to fully rule this
option out. Our study only explored a limited parameter space in conductivity and non-dimensional fluid dynam-
ics parameters due to computational limits. Some studies have suggested that the thickness of the prograde jet
may decrease at smaller Ekman numbers (Gastine, Heimpel, & Wicht, 2014; Gastine, Wicht, et al., 2014). This
is unlikely to resolve the mismatch in magnetic field morphology, but it could improve the fit to Jupiter's zonal
winds.

Additionally, while we assumed that Jupiter's observed surface zonal winds from cloud tracking extended deeper
into the planet (i.e., to at least 0.99 R, where our fluid shell began), this may not be the case. Historically,
fluid dynamical theories of Jupiter's zonal winds have fallen into two main camps—i(a) that the winds extend
geostrophically deep into the planet along so-called Taylor Columns (Busse, 1976), or (b) that the surface winds
could be considered a shallower “weather layer” due to effects such as variable solar insolation or latent heat from
ortho/para hydrogen phase transitions (see Vasavada and Showman (2005) for a review). Models of Jupiter's inte-
rior and zonal winds from Juno gravity observations suggest that the winds do extend deep (Guillot et al., 2018;
Kaspi et al., 2018), rendering this latter hypothesis unlikely.

Finally, while our results cast doubt on the considered the case of a dilute core that is stably stratified across the
entire region, many other flavors of a dilute core may still be possible. One possibility is a marginally stable dilute
core. While we ran initial exploratory simulations and found the field morphology to be much more sensitive
to the overall aspect ratio of the convective region than the stability of the bottom boundary, we cannot rule out
the possibility of a marginally stable dilute core entirely and recommend it worthy of additional consideration.
Other possibilities include a fully convective (i.e., homogeneous) dilute core; layered convection (e.g., featur-
ing an outer stable region where the gradient is sharpest overlying a second interior convective region Militzer
et al. (2022)), or semiconvection (Leconte & Chabrier, 2012; Moll et al., 2017). Indeed, while semi-convection
traditionally operates as a staircase of hundreds to thousands of thin layers for Earth-like regimes, the dynam-
ics of semi-convection in astrophysical regimes are poorly understood and may deviate substantially from this
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model (Garaud, 2018). It is clear that an investigation of the possibility of magnetic field generation under
semi-convection is required. Despite these caveats, however, our initial evidence from Jupiter's magnetic field
and zonal winds is still starkly against an interior profile that has only a dilute core and no upper stratified layer.

4.1. Comparisons With Current Jupiter Interior Models

A central question of this work was to determine if a stably stratified dilute core could extend beyond 0.2 R, in
Jupiter. This is a critical metric in planetary formation modeling. Miiller et al. (2020) found that traditional accre-
tion models cannot produce models with dilute cores that have radial extents greater than 0.2 R, even when the
models were intentionally pushed to possibly nonphysical limits in order to support the formation of an extended
dilute core. That radius has proved to be a key cutoff for Jupiter's dynamo magnetic field as well; stratified dilute
core radii larger than 0.2 R, did not produce any dipolar (i.e., Jupiter-like) magnetic fields, except for when an
upper SSL was also present. Thus, our results are consistent with current planetary accretion models, including
new work suggestive of an interior with both a fuzzy core with an upper stable layer (Shibata & Helled, 2022).

Closer to the planet's surface, interior models constrained by Juno gravity data often require extremely low
concentrations of atmospheric heavy elements (Z). One way to solve this problem is to artificially enhance the
planet's surface temperature (Miguel et al., 2022; Nettelmann et al., 2021), or to assume a steeper-than-adiabatic
T-gradient in an inhomogeneous stably stratified region at ~0.95 R, (Debras & Chabrier, 2019). Our study reports
evidence from simulations of Jupiter's magnetic field morphology that strongly support an upper stratified layer
in the planet's interior at this depth. The synergistic results from gravity and magnetic field analyses reported
here is extremely promising. However, the exact mechanism of such a shallow SSL (0.9-0.95 R)) is currently
unknown.

One possibility worthy of consideration is helium rainout. Outstanding questions remain about the existence and
extent of helium rainout within the giant planets. For example, while Saturn is currently believed to be experi-
encing helium rain, there is significant uncertainty regarding the extent of this process. Evolutionary models
predict that Saturn should be colder (cooled more quickly since formation) than its present day temperature, and
so a process such as helium rain can help to explain Saturn's slower cooling and excess luminosity (Fortney &
Hubbard, 2003). Analysis of Saturnian upper atmospheric helium abundance observations vary depending on the
adopted methods, from a slightly depleted state (Conrath & Gautier, 2000; Koskinen & Guerlet, 2018) (minimal
helium rainout) to severely depleted (Achterberg & Flasar, 2020; Conrath et al., 1984; Sromovsky et al., 2016)
(extensive helium rainout). The case for helium rain is less certain for Jupiter based on the planet's pressure
temperature profile (Brygoo et al., 2021; Morales et al., 2013; Schottler & Redmer, 2018), although atmospheric
measurements of outer atmospheric helium and neon depletion from the Galileo probe strongly suggest the pres-
ence of helium rain (Niemann et al., 1998).

But our preferred depth for the upper SSL, 0.9-0.95 R, is much shallower than current phase diagrams of H/
He mixtures suggest helium rain should occur. While there are large uncertainties in the exact location of H/
He demixing, models consistently find it should be in the vicinity of 0.6-0.86 R,, or 0.9—10 Mbar (Hubbard &
Militzer, 2016; Mankovich & Fortney, 2020; Nettelmann et al., 2015); see Figure 1. What's more, even if helium
rain is present, it may not lead to stable stratification in the rainout region. Rather, it could be fully convective,
or lead to more complicated dynamics. For example, Debras and Chabrier (2019) hypothesize helium rain may
cause a double diffusive instability in the vicinity of the upper SSL of our best-fitting model. That is to say, the
existence of a stable layer at 0.95 R, would imply that either our current understanding of the thermodynamics of
hydrogen-helium at high pressures would need revision, or that an effect other than the helium gradient may be
responsible for the layer. Thus, the mechanism for a stable layer at approximately 0.95 R, is still an open question.

5. Conclusions

Numerical dynamo models of giant planet interiors provide insights not only into a planet's present day interior
structure and dynamics, but also its past formation and evolution. Our new, state-of-the-art simulations featur-
ing SSLs suggest that an upper SSL helps to explain Jupiter's dynamo and winds; the best-fitting model used
featured a SSL from 0.90 to 0.95 R,. In contrast, our models with stably stratified dilute cores provided worse fits
to Jupiter's observed field and winds, unless an upper SSL was also included. Our work highlights the ongoing
challenges in explaining the planet's origins, and reinforces Jupiter's interdisciplinary nature. As the Juno Mission
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continues its extended mission, we hope that future modeling work can benefit additional constraints such as
maps of the magnetic field's time-variation, and the geometry of possible wind-sheared field features.
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