15 research outputs found

    Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID).

    Get PDF
    Homocysteine is produced physiologically in all cells, and is present in plasma of healthy individuals (plasma [HCy]: 3-10μM). While rare genetic mutations (CBS, MTHFR) cause severe hyperhomocysteinemia ([HCy]: 100-200μM), mild-moderate hyperhomocysteinemia ([HCy]: 10-100μM) is common in older people, and is an independent risk factor for stroke and cognitive impairment. As B-vitamin supplementation (B6, B12 and folate) has well-validated homocysteine-lowering efficacy, this may be a readily-modifiable risk factor in vascular contributions to cognitive impairment and dementia (VCID). Here we review the biochemical and cellular actions of HCy related to VCID. Neuronal actions of HCy were at concentrations above the clinically-relevant range. Effects of HCy <100μM were primarily vascular, including myocyte proliferation, vessel wall fibrosis, impaired nitric oxide signalling, superoxide generation and pro-coagulant actions. HCy-lowering clinical trials relevant to VCID are discussed. Extensive clinical and preclinical data support HCy as a mediator for VCID. In our view further trials of combined B-vitamin supplementation are called for, incorporating lessons from previous trials and from recent experimental work. To maximise likelihood of treatment effect, a future trial should: supply a high-dose, combination supplement (B6, B12 and folate); target the at-risk age range; and target cohorts with low baseline B-vitamin status. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock

    Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats

    Get PDF
    There is strong evidence that vascular risk factors play a role in the development of Alzheimer's disease (AD) or vascular dementia (vaD). Ethanol (EtOH) and cholesterol are such vascular risk factors, and we recently showed that hypercholesterolemia causes pathologies similar to AD [Ullrich et al. (2010) Mol Cell Neurosci 45, 408–417]. The aim of this study was to investigate the effects of long-term (12 months) EtOH treatment (20% v/v in drinking water) alone or long-term 5% cholesterol diet alone or a combination (mix) in adult Sprague–Dawley rats. Long-term EtOH treatment (plasma EtOH levels 58±23 mg/dl) caused significant impairment of spatial memory, reduced the number of choline acetyltransferase- and p75 neurotrophin receptor-positive nucleus basalis of Meynert neurons, decreased cortical acetylcholine, elevated cortical monocyte chemoattractant protein-1 and tissue-type plasminogen activator, enhanced microglia, and markedly induced anti-rat immunoglobulin G-positive blood–brain barrier leakage. The effect of long-term hypercholesterolemia was similar. Combined long-term treatment of rats with 20% EtOH and 5% cholesterol (mix) did not potentiate treatment with EtOH alone, but instead counteracted some of the EtOH-associated effects. In conclusion, our data show that vascular risk factors EtOH and cholesterol play a role in cognitive impairment and possibly vaD
    corecore