1,268 research outputs found

    Oxygen semipermeable solid oxide membrane composites prepared by electrochemical vapor deposition

    Get PDF
    Ceramic membrane composites consisting of a coarse porous -alumina or two-layer porous alumina membrane support and an oxygen semipermeable gas tight thin (0.2–5 ÎŒm) yttria stabilized zirconia (YSZ) film are prepared by the electrochemical vapor deposition (EVD) method. The minimum gas-tight thickness of the YSZ films depends strongly on the average pore size of the support on which the films are deposited by the EVD process. The oxygen permeation fluxes through such gas tight YSZ membrane composites, measured in situ on the EVD apparatus, are in the range of 3 × 10−9 to 6 × 10−8 mol/cm2-sec with an oxygen partial pressures of Pâ€ČO2 (high) ≈ 3 × 10−2 atm and P″O2 (low) ≈ 10−5 atm, much larger than the literature data for thicker YSZ pellets. During the oxygen permeation experiments the rate-limiting step is found to be the bulk electrochemical transport in the grown YSZ films with a thickness smaller than 10 ÎŒm.\u

    A Simple Model of Epidemics with Pathogen Mutation

    Full text link
    We study how the interplay between the memory immune response and pathogen mutation affects epidemic dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune responses, with contacted individuals becoming infected only if they are exposed to strains that are significantly different from other strains in their memory repertoire. The second model is a reduction of the first to a system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune class. In both models, we observe four fundamentally different types of behavior, depending on parameters: (1) pathogen extinction due to lack of contact between individuals, (2) endemic infection (3) periodic epidemic outbreaks, and (4) one or more outbreaks followed by extinction of the epidemic due to extremely low minima in the oscillations. We analyze both models to determine the location of each transition. Our main result is that pathogens in highly connected populations must mutate rapidly in order to remain viable.Comment: 9 pages, 11 figure

    Factors affecting In vitro methane production from cecum contents of White Roman geese

    Get PDF
    The goal of this research was to gain understanding of in vitro methane (CH4) production from the cecal contents of White Roman geese under various incubation conditions. Five experiments were conducted to ascertain the effects of i) incubation time, ii) pH, iii) the addition of formic acid to the culture media, iv) temperature, and v) the addition of salt to the nutritive liquid. Methane production increased significantly with the supplementation of formic acid in the culture fluid (Experiment III). Additionally, CH4 production Experiment V was higher than that without saline. In contrast, low CH4 production occurred under acidic conditions (pH ≩5.4) and at temperatures higher or lower than typical bird body temperature (43 °C) without formic acid and saline solution in the culture media. Since bird body temperature cannot be controlled easily, approaches such as maintaining cecum fluid at low pH and preventing the formation of formic acid by adjusting the recipes of feeds could be considered for controlling in vivo CH4 production from the intestinal tract digesta of geese

    How Many Topics? Stability Analysis for Topic Models

    Full text link
    Topic modeling refers to the task of discovering the underlying thematic structure in a text corpus, where the output is commonly presented as a report of the top terms appearing in each topic. Despite the diversity of topic modeling algorithms that have been proposed, a common challenge in successfully applying these techniques is the selection of an appropriate number of topics for a given corpus. Choosing too few topics will produce results that are overly broad, while choosing too many will result in the "over-clustering" of a corpus into many small, highly-similar topics. In this paper, we propose a term-centric stability analysis strategy to address this issue, the idea being that a model with an appropriate number of topics will be more robust to perturbations in the data. Using a topic modeling approach based on matrix factorization, evaluations performed on a range of corpora show that this strategy can successfully guide the model selection process.Comment: Improve readability of plots. Add minor clarification

    Unphysical Operators in Partially Quenched QCD

    Full text link
    We point out that the chiral Lagrangian describing pseudo-Goldstone bosons in partially quenched QCD has one more four-derivative operator than that for unquenched QCD with three flavors. The new operator can be chosen to vanish in the unquenched sector of the partially quenched theory. Its contributions begin at next-to-leading order in the chiral expansion. At this order it contributes only to unphysical scattering processes, and we work out some examples. Its contributions to pseudo-Goldstone properties begin at next-to-next-to-leading order, and we determine their form. We also determine all the zero and two derivative operators in the O(p6)O(p^6) partially quenched chiral Lagrangian, finding three more than in unquenched QCD, and use these to give the general form of the analytic next-to-next-to-leading order contributions to the pseudo-Goldstone mass and decay constant. We discuss the general implications of such additional operators for the utility of partially quenched simulationsComment: 13 pages, 11 figures Version 2: Additional footnote and parenthesis in section

    MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA

    Get PDF
    Gram-negative bacteria utilize specialized machinery to translocate drugs and protein toxins across the inner and outer membranes, consisting of a tripartite complex composed of an inner membrane secondary or primary active transporter (IMP), a periplasmic membrane fusion protein, and an outer membrane channel. We have investigated the assembly and function of the MacAB/TolC system that confers resistance to macrolides in Escherichia coli. The membrane fusion protein MacA not only stabilizes the tripartite assembly by interacting with both the inner membrane protein MacB and the outer membrane protein TolC, but also has a role in regulating the function of MacB, apparently increasing its affinity for both erythromycin and ATP. Analysis of the kinetic behavior of ATP hydrolysis indicated that MacA promotes and stabilizes the ATP-binding form of the MacB transporter. For the first time, we have established unambiguously the dimeric nature of a noncanonic ABC transporter, MacB that has an N-terminal nucleotide binding domain, by means of nondissociating mass spectrometry, analytical ultracentrifugation, and atomic force microscopy. Structural studies of ABC transporters indicate that ATP is bound between a pair of nucleotide binding domains to stabilize a conformation in which the substrate-binding site is outward-facing. Consequently, our data suggest that in the presence of ATP the same conformation of MacB is promoted and stabilized by MacA. Thus, MacA would facilitate the delivery of drugs by MacB to TolC by enhancing the binding of drugs to it and inducing a conformation of MacB that is primed and competent for binding TolC. Our structural studies are an important first step in understanding how the tripartite complex is assembled

    "Forbidden" transitions between quantum Hall and insulating phases in p-SiGe heterostructures

    Full text link
    We show that in dilute metallic p-SiGe heterostructures, magnetic field can cause multiple quantum Hall-insulator-quantum Hall transitions. The insulating states are observed between quantum Hall states with filling factors \nu=1 and 2 and, for the first time, between \nu=2 and 3 and between \nu=4 and 6. The latter are in contradiction with the original global phase diagram for the quantum Hall effect. We suggest that the application of a (perpendicular) magnetic field induces insulating behavior in metallic p-SiGe heterostructures in the same way as in Si MOSFETs. This insulator is then in competition with, and interrupted by, integer quantum Hall states leading to the multiple re-entrant transitions. The phase diagram which accounts for these transition is similar to that previously obtained in Si MOSFETs thus confirming its universal character

    SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data

    Get PDF
    Motivation: Accurately clustering cell types from a mass of heterogeneous cells is a crucial first step for the analysis of single-cell RNA-seq (scRNA-Seq) data. Although several methods have been recently developed, they utilize different characteristics of data and yield varying results in terms of both the number of clusters and actual cluster assignments. Results: Here, we present SAFE-clustering, single-cell aggregated (From Ensemble) clustering, a flexible, accurate and robust method for clustering scRNA-Seq data. SAFE-clustering takes as input, results from multiple clustering methods, to build one consensus solution. SAFE-clustering currently embeds four state-of-the-art methods, SC3, CIDR, Seurat and t-SNE ĂŸ k-means; and ensembles solutions from these four methods using three hypergraph-based partitioning algorithms. Extensive assessment across 12 datasets with the number of clusters ranging from 3 to 14, and the number of single cells ranging from 49 to 32, 695 showcases the advantages of SAFEclustering in terms of both cluster number (18.2-58.1% reduction in absolute deviation to the truth) and cluster assignment (on average 36.0% improvement, and up to 18.5% over the best of the four methods, measured by adjusted rand index). Moreover, SAFE-clustering is computationally efficient to accommodate large datasets, taking <10 min to process 28 733 cells

    Dynamical Behavior of dilaton in de Sitter space

    Get PDF
    We study the dynamical behavior of the dilaton in the background of three-dimensional Kerr-de Sitter space which is inspired from the low-energy string effective action. The perturbation analysis around the cosmological horizon of Kerr-de Sitter space reveals a mixing between the dilaton and other fields. Introducing a gauge (dilaton gauge), we can disentangle this mixing completely and obtain one decoupled dilaton equation. However it turns out that this belongs to the tachyon. The stability of de Sitter solution with J=0 is discussed. Finally we compute the dilaton absorption cross section to extract information on the cosmological horizon of de Sitter space.Comment: 11 pages, reference added and a version to appear in PL
    • 

    corecore