54 research outputs found

    Methods for multi-site and multi-tissue analysis of DNA methylation data

    Full text link
    DNA methylation is an epigenetic modification that plays an important role in gene regulation. DNA methylation varies between individuals and between tissues in the same individual. Many cohorts have measured DNA methylation in one or more tissues at hundreds of thousands of sites across the genome using methylation microarrays, and a standard analysis approach is to model the relationship between DNA methylation and a phenotype at each site and in each tissue separately. In this thesis, we explore methods for jointly analyzing multiple sites and/or multiple tissues. First, we propose a novel approach to identify differentially methylated regions (DMRs), neighboring sites in a single tissue associated with a phenotype, and compare our approach to two existing approaches to detect DMRs. We show that our method is useful when there are multiple sites in a region with weak or moderate associations with a phenotype. Then, we return to single-site analysis but evaluate methods for analyzing data from multiple tissues, accounting for correlation between two tissue samples from the same individual. We consider methods to model both the mean and variance of methylation sites as well as methods to model mean methylation only. In addition to evaluating existing models, we propose a novel random-effects meta-analysis, which is appropriate for meta-analyzing multiple parameters from correlated studies (or tissues). We show that we have inflated type I error with all meta-analysis methods and methods which model the variance of methylation. Finally, we evaluate methods to incorporate information from multiple sites and multiple tissues in association tests. We examine a gene set analysis method, MAGENTA, which was developed for genetic association studies, and propose an extension that is appropriate for DNA methylation data.2021-02-05T00:00:00

    Application of Novel and Existing Methods to Identify Genes with Evidence of Epigenetic Association: Results from GAW20

    Get PDF
    Background: The rise in popularity and accessibility of DNA methylation data to evaluate epigenetic associations with disease has led to numerous methodological questions. As part of GAW20, our working group of 8 research groups focused on gene searching methods. Results: Although the methods were varied, we identified 3 main themes within our group. First, many groups tackled the question of how best to use pedigree information in downstream analyses, finding that (a) the use of kinship matrices is common practice, (b) ascertainment corrections may be necessary, and (c) pedigree information may be useful for identifying parent-of-origin effects. Second, many groups also considered multimarker versus single-marker tests. Multimarker tests had modestly improved power versus single-marker methods on simulated data, and on real data identified additional associations that were not identified with single-marker methods, including identification of a gene with a strong biological interpretation. Finally, some of the groups explored methods to combine single-nucleotide polymorphism (SNP) and DNA methylation into a single association analysis. Conclusions: A causal inference method showed promise at discovering new mechanisms of SNP activity; gene-based methods of summarizing SNP and DNA methylation data also showed promise. Even though numerous questions still remain in the analysis of DNA methylation data, our discussions at GAW20 suggest some emerging best practices

    An Integrative Cross-Omics Analysis of DNA Methylation Sites of Glucose and Insulin Homeostasis

    Get PDF
    Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D

    DNA methylation and body mass index from birth to adolescence : meta-analyses of epigenome-wide association studies

    Get PDF
    Background DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. Methods We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. Results DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P <1.06 x 10(-7), with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth P-enrichment = 1; childhood P-enrichment = 2.00 x 10(-4); adolescence P-enrichment = 2.10 x 10(-7)). Conclusions There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.Peer reviewe

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe

    An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis

    Get PDF
    Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D

    DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies

    Get PDF
    Background DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. Methods We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. Results DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 x 10(-7), with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth P-enrichment = 1; childhood P-enrichment = 2.00 x 10(-4); adolescence P-enrichment = 2.10 x 10(-7)). Conclusions There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity

    Investigation of parent-of-origin effects induced by fenofibrate treatment on triglycerides levels

    No full text
    Abstract Background Genome-wide association studies performed on triglycerides (TGs) have not accounted for epigenetic mechanisms that may partially explain trait heritability. Results Parent-of-origin (POO) effect association analyses using an agnostic approach or a candidate approach were performed for pretreatment TG levels, posttreatment TG levels, and pre- and posttreatment TG-level differences in the real GAW20 family data set. We detected 22 genetic variants with suggestive POO effects with at least 1 phenotype (P ≤ 10− 5). We evaluated the association of these 22 significant genetic variants showing POO effects with close DNA methylation probes associated with TGs. A total of 18 DNA methylation probes located in the vicinity of the 22 SNPs were associated with at least 1 phenotype and 6 SNP-probe pairs were associated with DNA methylation probes at the nominal level of P < 0.05, among which 1 pair presented evidence of POO effect. Our analyses identified a paternal effect of SNP rs301621 on the difference between pre- and posttreatment TG levels (P = 1.2 × 10− 5). This same SNP showed evidence for a maternal effect on methylation levels of a nearby probe (cg10206250; P = 0.01). Using a causal inference test we established that the observed POO effect of rs301621 was not mediated by DNA methylation at cg10206250. Conclusions We performed POO effect association analyses of SNPs with TGs, as well as association analyses of SNPs with DNA methylation probes. These analyses, which were followed by a causal inference test, established that the paternal effect at the SNP rs301621 is induced by treatment and is not mediated by methylation level at cg10206250
    corecore