116 research outputs found

    Napoleon: The Warrior Unmasked

    Get PDF
    United States expansion, Latin American independence, and the legal equality of Frenchmen, in some degree are all attributed to Napoleon Bonaparte. Contrary to popular belief Napoleon did more than just conquer much of Europe; he left a lasting impression on the world beyond his military prowess. Napoleon will not be examined as a warrior, but rather this thesis will deal with Napoleon as a man who changed the world. This thesis attempts to debunk the widely held notion of Napoleon as solely a military leader, or a simple emperor. It brings to light Napoleon’s involvement in France, and upon the world, that ensured Napoleon a lasting legacy. This lasting legacy was not built solely by Napoleon’s military career, but also by the politician from within. This thesis shows Napoleon’s diversity, as he should be known for something more than just a warlord. Most importantly it gives depth to Napoleon and the events that he partook in that otherwise would be meaningless military achievements to people of the Common Era

    The VLT-FLAMES Tarantula Survey XV. VFTS 822: A candidate Herbig B[e] star at low metallicity

    Get PDF
    We report the discovery of the B[e] star VFTS 822 in the 30 Doradus star-forming region of the Large Magellanic Cloud, classified by optical spectroscopy from the VLT-FLAMES Tarantula Survey and complementary infrared photometry. VFTS 822 is a relatively low-luminosity (log L = 4.04 ± 0.25 L⊙) B8[e] star. In this Letter, we evaluate the evolutionary status of VFTS 822 and discuss its candidacy as a Herbig B[e] star. If the object is indeed in the pre-main sequence phase, it would present an exciting opportunity to spectroscopically measure mass accretion rates at low metallicity, to probe the effect of metallicity on accretion rates

    Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    Get PDF
    Along mid-ocean ridges the extending crust is segmented1 on length scales of 10–1,000 km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries2 accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf3. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments

    A 13CO and C18O Survey of the Molecular Gas Around Young Stellar Clusters Within 1kpc of the Sun

    Full text link
    As the first step of a multi-wavelength investigation into the relationship between young stellar clusters and their environment we present fully-sampled maps in the J=1--0 lines of 13CO and C18O and the J=2--1 line of C18O for a selected group of thirty young stellar groups and clusters within 1kpc of the Sun. This is the first systematic survey of these regions to date. The clusters range in size from several stars to a few hundred stars. Thirty fields ranging in size from 8'x 8' to 60'x 30' were mapped with 47'' resolution simultaneously in the J=1-0 lines with Five College Radio Observatory. Seventeen sources were mapped over fields ranging in size from 3'x 3' to 13'x 13' in the J=2--1 line with 35'' resolution with the Heinrich Hertz Telescope. We compare the cloud properties derived from each of the three tracers in order to better understand systematic uncertainties in determing masses and linewidths. Cloud masses are determined independently using the 13CO and C18O transitions, these masses range from 30 to 4000 M_sun. Finally, we present a simple morphological classification scheme which may serve as a rough indicator of cloud evolution.Comment: 52 pages, 29 figures. Accepted for publication in AJ. Some figures have been reduced in resolution, a full resolution version is available from http://daisy.astro.umass.edu/~naomi/pubs/pubs.htm

    Blunted Neuronal Calcium Response to Hypoxia in Naked Mole-Rat Hippocampus

    Get PDF
    Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals

    A new mechanical stellar wind feedback model for the Rosette Nebula

    Get PDF
    The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2–6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, −0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 Mₒ star in a thin sheet-like molecular cloud. We form the 135 000 Mₒ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback

    Massive Star Formation

    Full text link
    This chapter reviews progress in the field of massive star formation. It focuses on evidence for accretion and current models that invoke high accretion rates. In particular it is noted that high accretion rates will cause the massive young stellar object to have a radius much larger than its eventual main sequence radius throughout much of the accretion phase. This results in low effective temperatures which may provide the explanation as to why luminous young stellar objects do not ionized their surroundings to form ultra-compact H II regions. The transition to the ultra-compact H II region phase would then be associated with the termination of the high accretion rate phase. Objects thought to be in a transition phase are discussed and diagnostic diagrams to distinguish between massive young stellar objects and ultra-compact H II regions in terms of line widths and radio luminosity are presented.Comment: 21 pages, 6 figures, chapter in Diffuse Matter from Star Forming Regions to Active Galaxies - A Volume Honouring John Dyson, Edited by T.W. Hartquist, J. M. Pittard, and S. A. E. G. Falle. Series: Astrophysics and Space Science Proceedings. Springer Dordrecht, 2007, p.6

    The relation between the most-massive star and its parental star cluster mass

    Full text link
    We present a thorough literature study of the most-massive star, m_max, in several young star clusters in order to assess whether or not star clusters are populated from the stellar initial mass function (IMF) by random sampling over the mass range 0.01 < m < 150 M_sol without being constrained by the cluster mass, M_ecl. The data reveal a partition of the sample into lowest mass objects (M_ecl < 10^2 M_sol), moderate mass clusters (10^2 M_sol < M_ecl < 10^3 M_sol) and rich clusters above 10^3 M_sol. Additionally, there is a plateau of a constant maximal star mass (m_max ~ 25 M_sol) for clusters with masses between 10^3 M_sol and 4 10^3 M_sol. Statistical tests of this data set reveal that the hypothesis of random sampling from the IMF between 0.01 and 150 M_sol is highly unlikely for star clusters more massive than 10^2 M_sol with a probability of p ~ 2 10^-7 for the objects with M_ecl between 10^2 M_sol and 10^3 M_sol and p ~ 3 10^-9 for the more massive star clusters. Also, the spread of m_max values at a given M_ecl is smaller than expected from random sampling. We suggest that the basic physical process able to explain this dependence of stellar inventory of a star cluster on its mass may be the interplay between stellar feedback and the binding energy of the cluster-forming molecular cloud core. Given these results, it would follow that an integrated galactic initial mass function (IGIMF) sampled from such clusters would automatically be steeper in comparison to the IMF within individual star clusters.Comment: 26 pages, 13 figures, 3 tables, accepted for publication in MNRA
    corecore