209 research outputs found

    Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes

    Get PDF
    Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long-read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share \u3e98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms

    RNA from a simple-tandem repeat is required for sperm maturation and male fertility in Drosophila melanogaster.

    Get PDF
    Tandemly-repeated DNAs, or satellites, are enriched in heterochromatic regions of eukaryotic genomes and contribute to nuclear structure and function. Some satellites are transcribed, but we lack direct evidence that specific satellite RNAs are required for normal organismal functions. Here, we show satellite RNAs derived from AAGAG tandem repeats are transcribed in many cells throughout Drosophila melanogaster development, enriched in neurons and testes, often localized within heterochromatic regions, and important for viability. Strikingly, we find AAGAG transcripts are necessary for male fertility, and that AAGAG RNA depletion results in defective histone-protamine exchange, sperm maturation and chromatin organization. Since these events happen late in spermatogenesis when the transcripts are not detected, we speculate that AAGAG RNA in primary spermatocytes 'primes' post-meiosis steps for sperm maturation. In addition to demonstrating essential functions for AAGAG RNAs, comparisons between closely related Drosophila species suggest that satellites and their transcription evolve quickly to generate new functions

    Association between Sex-Biased Gene Expression and Mutations with Sex-Specific Phenotypic Consequences in Drosophila

    Get PDF
    Genome-wide mRNA transcription profiles reveal widespread molecular sexual dimorphism or “sex-biased” gene expression, yet the relationship between molecular and phenotypic sexual dimorphism remains unclear. A major unresolved question is whether sex-biased genes typically perform male- and female-specific functions (whether these genes have sex-biased phenotypic or fitness consequences) or have similar functional importance for both sexes. To elucidate the relationship between sex-biased transcription and sex-biased fitness consequences, we analyzed a large data set of lethal, visible, and sterile mutations that have been mapped to the Drosophila melanogaster genome. The data permitted us to classify genes according to their sex-specific mutational effects and to infer the relationship between sex-biased transcription level and sex-specific fitness consequences. We find that mutations in female-biased genes are (on average) more deleterious to females than to males and that mutations in male-biased genes tend to be more deleterious to males than to females. Nevertheless, mutations in most sex-biased genes have similar phenotypic consequences for both sexes, which suggests that sex-biased transcription is not necessarily associated with functional genetic differentiation between males and females. These results have interesting implications for the evolution of sexual dimorphism and sex-specific adaptation

    Resistance to natural and synthetic gene drive systems

    Get PDF
    Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general

    Gene Family Size Conservation Is a Good Indicator of Evolutionary Rates

    Get PDF
    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human–chimpanzee–macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes

    Centromere-associated meiotic drive and female fitness variation in Mimulus

    Get PDF
    This is the peer reviewed version of the following article: Fishman, L. and Kelly, J. K. (2015), Centromere‐associated meiotic drive and female fitness variation in Mimulus. Evolution, 69: 1208-1218. doi:10.1111/evo.12661, which has been published in final form at http://doi.org/10.1111/evo.12661. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Female meiotic drive, in which chromosomal variants preferentially segregate to the egg pole during asymmetric female meiosis, is a theoretically pervasive but still mysterious form of selfish evolution. Like other selfish genetic elements, driving chromosomes may be maintained as balanced polymorphisms by pleiotropic or linked fitness costs. A centromere-associated driver (D) with a ~58:42 female-specific transmission advantage occurs at intermediate frequency (32–40%) in the Iron Mountain population of the yellow monkeyflower, Mimulus guttatus. Previously determined male fertility costs are sufficient to prevent the fixation of D, but predict a higher equilibrium frequency. To better understand the dynamics and effects of D, we developed a new population genetic model and measured genotype-specific lifetime female fitness in the wild. In three of four years, and across all years, D imposed significant recessive seedset costs, most likely due to hitchhiking by deleterious mutations. With both male and female costs as measured, and 58:42 drive, our model predicts an equilibrium frequency of D (38%) very close to the observed value. Thus, D represents a rare selfish genetic element whose local population genetic dynamics have been fully parameterized, and the observation of equilibrium sets the stage for investigations of coevolution with suppressors

    Molecular Evolution in Nonrecombining Regions of the Drosophila melanogaster Genome

    Get PDF
    We study the evolutionary effects of reduced recombination on the Drosophila melanogaster genome, analyzing more than 200 new genes that lack crossing-over and employing a novel orthology search among species of the melanogaster subgroup. These genes are located in the heterochromatin of chromosomes other than the dot (fourth) chromosome. Noncrossover regions of the genome all exhibited an elevated level of evolutionary divergence from D. yakuba at nonsynonymous sites, lower codon usage bias, lower GC content in coding and noncoding regions, and longer introns. Levels of gene expression are similar for genes in regions with and without crossing-over, which rules out the possibility that the reduced level of adaptation that we detect is caused by relaxed selection due to lower levels of gene expression in the heterochromatin. The patterns observed are consistent with a reduction in the efficacy of selection in all regions of the genome of D. melanogaster that lack crossing-over, as a result of the effects of enhanced Hill–Robertson interference. However, we also detected differences among nonrecombining locations: The X chromosome seems to exhibit the weakest effects, whereas the fourth chromosome and the heterochromatic genes on the autosomes located most proximal to the centromere showed the largest effects. However, signatures of selection on both nonsynonymous mutations and on codon usage persist in all heterochromatic regions

    Positive Selection Differs between Protein Secondary Structure Elements in Drosophila

    Get PDF
    Different protein secondary structure elements have different physicochemical properties and roles in the protein, which may determine their evolutionary flexibility. However, it is not clear to what extent protein structure affects the way Darwinian selection acts at the amino acid level. Using phylogeny-based likelihood tests for positive selection, we have examined the relationship between protein secondary structure and selection across six species of Drosophila. We find that amino acids that form disordered regions, such as random coils, are far more likely to be under positive selection than expected from their proportion in the proteins, and residues in helices and β-structures are subject to less positive selection than predicted. In addition, it appears that sites undergoing positive selection are more likely than expected to occur close to one another in the protein sequence. Finally, on a genome-wide scale, we have determined that positively selected sites are found more frequently toward the gene ends. Our results demonstrate that protein structures with a greater degree of organization and strong hydrophobicity, represented here as helices and β-structures, are less tolerant to molecular adaptation than disordered, hydrophilic regions, across a diverse set of proteins
    corecore