64 research outputs found

    Ames Laboratory analytical procedures for determination of impurities in calcium metal

    Get PDF
    Analytical procedures for the determination of aluminum, chromium, iron, manganese, nickel, nitrogen and silicon in calcium metal are discussed

    Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo

    Get PDF
    BACKGROUND: Activating mutations of FGFR3 are frequently identified in superficial urothelial carcinoma (UC) and increased expression of FGFR1 and FGFR3 are common in both superficial and invasive UC. METHODS: The effects of inhibition of receptor activity by three small molecule inhibitors (PD173074, TKI-258 and SU5402) were investigated in a panel of bladder tumour cell lines with known FGFR expression levels and FGFR3 mutation status. RESULTS: All inhibitors prevented activation of FGFR3, and inhibited downstream MAPK pathway signalling. Response was related to FGFR3 and/or FGFR1 expression levels. Cell lines with the highest levels of FGFR expression showed the greatest response and little or no effect was measured in normal human urothelial cells or in UC cell lines with activating RAS gene mutations. In sensitive cell lines, the drugs induced cell cycle arrest and/or apoptosis. IC(50) values for PD173074 and TKI-258 were in the nanomolar concentration range compared with micromolar concentrations for SU5402. PD173074 showed the greatest effects in vitro and in vivo significantly delayed the growth of subcutaneous bladder tumour xenografts. CONCLUSION: These results indicate that inhibition of FGFR1 and wild-type or mutant FGFR3 may represent a useful therapeutic approach in patients with both non-muscle invasive and muscle invasive UC

    Overconfident Investors, Predictable Returns, and Excessive Trading

    Get PDF
    The last several decades have witnessed a shift away from a fully rational paradigm of financial markets toward one in which investor behavior is influenced by psychological biases. Two principal factors have contributed to this evolution: a body of evidence showing how psychological bias affects the behavior of economic actors; and an accumulation of evidence that is hard to reconcile with fully rational models of security market trading volumes and returns. In particular, asset markets exhibit trading volumes that are high, with individuals and asset managers trading aggressively, even when such trading results in high risk and low net returns. Moreover, asset prices display patterns of predictability that are difficult to reconcile with rational-expectations–based theories of price formation. In this paper, we discuss the role of overconfidence as an explanation for these patterns

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008
    corecore