103 research outputs found
Association of Utrophin and Multiple Dystrophin Short Forms with the Mammalian Mr 58,000 Dystrophin-associated Protein (Syntrophin)
Electric tissue syntrophin, originally described as an M(r) 58,000 postsynaptic protein having homologs in mammalian muscle, was previously shown to associate with dystrophin in Triton extracts of Torpedo postsynaptic membranes. It also associates with the Torpedo M(r) 87,000 postsynaptic protein (87K), the core of which is a superdomain homologous to the cysteine-rich (CR) and COOH-terminal (CT) domains of human dystrophin. Using immunoaffinity purifications from various rat tissues and immunoblotting, we find that syntrophin associates with dystrophin, utrophin (the chromosome 6-encoded dystrophin homolog formerly known as dystrophin-related protein), multiple proteins which are cross-reactive with 87K, and two subfamilies of 71K-like proteins (CRCT-containing proteins encoded by the dystrophin gene under the control of an alternative promoter in intron 62). One 71K subfamily retains the dystrophin COOH-terminal sequence; the other has an alternative COOH-terminal sequence caused by deletion of the penultimate exon by alternative splicing. The relative masses of the members of the subfamilies suggest they arise by alternative splicing at other previously described sites within CT. These results establish that syntrophin is a general ligand for the CRCT domain in mammalian dystrophin and its homologs. They also reveal a greater diversity in 71K proteins than has previously been apparent
The 30 S lobster skeletal muscle Ca2+ release channel (ryanodine receptor) has functional properties distinct from the mammalian channel proteins.
The 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps)-solubilized ryanodine receptor (RyR) of lobster skeletal muscle has been isolated by rate density centrifugation as a 30 S protein complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified 30 S receptor revealed a single high molecular weight protein band with a mobility intermediate between those of the mammalian skeletal and cardiac M(r) 565,000 RyR polypeptides. Immunoblot analysis showed no or only minimal cross-reactivity with the rabbit skeletal and canine cardiac RyR polypeptides. By immunofluorescence the lobster RyR was localized to the junctions of the A-I bands. Following planar lipid bilayer reconstitution of the purified 30 S lobster RyR, single channel K+ and Ca2+ currents were observed which were modified by ryanodine and optimally activated by millimolar concentrations of cis (cytoplasmic) Ca2+. Vesicle-45Ca2+ flux measurements also indicated an optimal activation of the lobster Ca2+ channel by millimolar Ca2+, whereas 45Ca2+ efflux from mammalian skeletal and cardiac muscle sarcoplasmic reticulum (SR) vesicles is optimally activated by micromolar Ca2+. Further, mammalian muscle SR Ca2+ release activity is modulated by Mg2+ and ATP, whereas neither ligand appreciably affected 45Ca2+ efflux from lobster SR vesicles. These results suggested that lobster and mammalian muscle express immunologically and functionally distinct SR Ca2+ release channel protein complexes
Effects of hippocampal damage on reward threshold and response rate during self-stimulation of the ventral tegmental area in the rat
The main purpose of this study was to explore the role of the hippocampus in motivated behavior. Rats with bilateral excitotoxic lesions of the hippocampus and controls were trained to lever press for electrical stimulation of the ventral tegmental area. Rate intensity functions were generated from an ascending and descending series of current intensities. Lesion-induced changes in sensitivity to reward were distinguished from enhancements in motor output by calculating reward thresholds and maximal response rates from the rate-intensity functions. Rats with hippocampal damage showed lower reward thresholds and higher maximal response rates than controls. These results provide further evidence of hippocampal modulation of the nucleus accumbens, suggesting that lesions of this structure enhance sensitivity to reward and increase motor output
Absence of α-Syntrophin Leads to Structurally Aberrant Neuromuscular Synapses Deficient in Utrophin
The syntrophins are a family of structurally related proteins that contain multiple protein interaction motifs. Syntrophins associate directly with dystrophin, the product of the Duchenne muscular dystrophy locus, and its homologues. We have generated α-syntrophin null mice by targeted gene disruption to test the function of this association. The α-Syn−/− mice show no evidence of myopathy, despite reduced levels of α-dystrobrevin–2. Neuronal nitric oxide synthase, a component of the dystrophin protein complex, is absent from the sarcolemma of the α-Syn−/− mice, even where other syntrophin isoforms are present. α-Syn−/− neuromuscular junctions have undetectable levels of postsynaptic utrophin and reduced levels of acetylcholine receptor and acetylcholinesterase. The mutant junctions have shallow nerve gutters, abnormal distributions of acetylcholine receptors, and postjunctional folds that are generally less organized and have fewer openings to the synaptic cleft than controls. Thus, α-syntrophin has an important role in synapse formation and in the organization of utrophin, acetylcholine receptor, and acetylcholinesterase at the neuromuscular synapse
Structural Abnormalities at Neuromuscular Synapses Lacking Multiple Syntrophin Isoforms
The syntrophins are modular adapter proteins that function by recruiting signaling molecules to the cytoskeleton via their direct association with proteins of the dystrophin protein family. We investigated the physiological function of beta2-syntrophin by generating a line of mice lacking this syntrophin isoform. The beta2-syntrophin null mice show no overt phenotype, or muscular dystrophy, and form structurally normal neuromuscular junctions (NMJs). To determine whether physiological consequences caused by the lack of beta2-syntrophin were masked by compensation from the alpha-syntrophin isoform, we crossed these mice with our previously described alpha-syntrophin null mice to produce mice lacking both isoforms. The alpha/beta2-syntrophin null mice have NMJs that are structurally more aberrant than those lacking only alpha-syntrophin. The NMJs of the alpha/beta2-syntrophin null mice have fewer junctional folds than either parent strain, and the remaining folds are abnormally shaped with few openings to the synaptic space. The levels of acetylcholine receptors are reduced to 23% of wild type in mice lacking both syntrophin isoforms. Furthermore, the alpha/beta2-syntrophin null mice ran significantly shorter distances on voluntary exercise wheels despite having normal neuromuscular junction transmission as determined by micro-electrode recording of endplate potentials. We conclude that both alpha-syntrophin and beta2-syntrophin play distinct roles in forming and maintaining NMJ structure and that each syntrophin can partially compensate for the loss of the other
Differential Membrane Localization and Intermolecular Associations of α-Dystrobrevin Isoforms in Skeletal Muscle
α-Dystrobrevin is both a dystrophin homologue and a component of the dystrophin protein complex. Alternative splicing yields five forms, of which two predominate in skeletal muscle: full-length α-dystrobrevin-1 (84 kD), and COOH-terminal truncated α-dystrobrevin-2 (65 kD). Using isoform-specific antibodies, we find that α-dystrobrevin-2 is localized on the sarcolemma and at the neuromuscular synapse, where, like dystrophin, it is most concentrated in the depths of the postjunctional folds. α-Dystrobrevin-2 preferentially copurifies with dystrophin from muscle extracts. In contrast, α-dystrobrevin-1 is more highly restricted to the synapse, like the dystrophin homologue utrophin, and preferentially copurifies with utrophin. In yeast two-hybrid experiments and coimmunoprecipitation of in vitro–translated proteins, α-dystrobrevin-2 binds dystrophin, whereas α-dystrobrevin-1 binds both dystrophin and utrophin. α-Dystrobrevin-2 was lost from the nonsynaptic sarcolemma of dystrophin-deficient mdx mice, but was retained on the perisynaptic sarcolemma even in mice lacking both utrophin and dystrophin. In contrast, α-dystrobrevin-1 remained synaptically localized in mdx and utrophin-negative muscle, but was absent in double mutants. Thus, the distinct distributions of α-dystrobrevin-1 and -2 can be partly explained by specific associations with utrophin and dystrophin, but other factors are also involved. These results show that alternative splicing confers distinct properties of association on the α-dystrobrevins
Differential Association of Syntrophin Pairs with the Dystrophin Complex
The syntrophins are a multigene family of intracellular dystrophin-associated proteins comprising three isoforms, α1, β1, and β2. Based on their domain organization and association with neuronal nitric oxide synthase, syntrophins are thought to function as modular adapters that recruit signaling proteins to the membrane via association with the dystrophin complex. Using sequences derived from a new mouse β1-syntrophin cDNA, and previously isolated cDNAs for α1- and β2-syntrophins, we prepared isoform-specific antibodies to study the expression, skeletal muscle localization, and dystrophin family association of all three syntrophins. Most tissues express multiple syntrophin isoforms. In mouse gastrocnemius skeletal muscle, α1- and β1-syntrophin are concentrated at the neuromuscular junction but are also present on the extrasynaptic sarcolemma. β1-syntrophin is restricted to fast-twitch muscle fibers, the first fibers to degenerate in Duchenne muscular dystrophy. β2-syntrophin is largely restricted to the neuromuscular junction
Functional Substitution by TAT-Utrophin in Dystrophin-Deficient Mice
James Ervasti and colleagues show that injection of a truncated form of utrophin transduced all tissues examined, integrated with members of the dystrophin complex, and reduced serum levels of creatine kinase in a mouse model of muscular dystrophy
Assembly of the Dystrophin-Associated Protein Complex Does Not Require the Dystrophin Cooh-Terminal Domain
Dystrophin is a multidomain protein that links the actin cytoskeleton to laminin in the extracellular matrix through the dystrophin associated protein (DAP) complex. The COOH-terminal domain of dystrophin binds to two components of the DAP complex, syntrophin and dystrobrevin. To understand the role of syntrophin and dystrobrevin, we previously generated a series of transgenic mouse lines expressing dystrophins with deletions throughout the COOH-terminal domain. Each of these mice had normal muscle function and displayed normal localization of syntrophin and dystrobrevin. Since syntrophin and dystrobrevin bind to each other as well as to dystrophin, we have now generated a transgenic mouse deleted for the entire dystrophin COOH-terminal domain. Unexpectedly, this truncated dystrophin supported normal muscle function and assembly of the DAP complex. These results demonstrate that syntrophin and dystrobrevin functionally associate with the DAP complex in the absence of a direct link to dystrophin. We also observed that the DAP complexes in these different transgenic mouse strains were not identical. Instead, the DAP complexes contained varying ratios of syntrophin and dystrobrevin isoforms. These results suggest that alternative splicing of the dystrophin gene, which naturally generates COOH-terminal deletions in dystrophin, may function to regulate the isoform composition of the DAP complex
Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of α-dystrobrevin
Neuregulin/ErbB signaling maintains high efficacy of synaptic transmission by stabilizing the postsynaptic apparatus via phosphorylation of α-dystrobrevin1
- …