170 research outputs found

    Influence of waxes remelting used in investment casting on their thermal properties and linear shrinkage

    Get PDF
    This paper presents the results of thermal properties and linear shrinkage of jewelry waxes utilized in investment casting. Three types of jewelry waxes were cyclically processed (by heating, holding in a molten state and cooling)in the temperature range between 25 and 90 °C for about 7 hours. The samples were tested after 5th, 10th and 15thcycle. The remelting was designed to simulate the process of waxes reusability for production of patterns. Changes in thermal properties of waxes were determined using differential scanning calorimetry (DSC) and linear shrinkage values were specified. The conducted examinations allowed to establish the way of multiple utilization of waxes in producing precise models

    A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions

    Get PDF
    During the past 15 years, increasing application of microwave heating to polycondensation reactions has been witnessed. Experiments have been carried out at laboratory scale using widely different experimental procedures. The use of microwaves has often led to significant benefits compared to conventional heating experiments in terms of multi-fold decrease in reaction times and energy consumption and production of polymers with increased molecular weight and improved mechanical properties. In other cases, microwaves do not appear to produce any significant benefits compared to conventional heating. At present, guidelines to experimentalist as to the process conditions and experimental design that should be applied are missing and experimentation seems to be based on an empirical trial-and-error approach. In view of the very different experimental protocols that have been applied and the contradictory trends that are frequently reported, we aim in this review to shed light on the role of important process parameters, such as the presence and type of solvent, the dielectric properties of the mixture and the individual phases, the use of heterogeneous catalysts, pressure, stirring, reflux conditions, temperature measurement method and microwave absorbing fillers, which all seem to determine the occurrence and magnitude of the benefits enabled by microwaves during polycondensation reactions

    Manufacturing and characterization of sustainable and recyclable wood-polypropylene biocomposites:Multiprocessing-properties-structure relationships

    Get PDF
    In this study, sustainable polymeric materials with a polypropylene matrix reinforced with wood waste were developed for structural applications. The new polymer biocomposites (WPCs) were evaluated for their mechanical and structural properties regarding their susceptibility to multiple processing. As thermo-mechanical degradation processes are associated with the repeated processing of plastics, which causes changes in the properties and structure of these materials. Therefore, to determine the extent to which the composites can be used under operating conditions, the composites were examined by DMA. As a result of the study observed some effects caused by the repeated effects of shear stress and temperature on the rheological and mechanical properties of polymer composites. The first of these is related to a decrease in viscosity of WPC composites subjected to the six times processing and changes in flow conditions during extrusion and injection moulding due to the degradation of the polypropylene matrix. As the viscosity of the composites decreased, a reduction in tensile strength and other mechanical properties of the polypropylene matrix was noted. On the other hand, the second effect observed leads to the conclusion that, as the composites' processing cycles increase, the WPC composite's mechanical properties increase due to an increase in the degree of homogenization of the individual components of the WPC composition. This study aims to describe the relationship between these two primary processes and to determine the relationship between the properties and the structure of the new WPCs.</p

    Structural and Mechanistic Analysis of the Slx1-Slx4 Endonuclease

    Get PDF
    SummaryThe SLX1-SLX4 endonuclease required for homologous recombination and DNA repair in eukaryotic cells cleaves a variety of branched DNA structures. The nuclease subunit SLX1 is activated by association with a scaffolding protein SLX4. At the present time, little is known about the structure of SLX1-SLX4 or its mechanism of action. Here, we report the structural insights into SLX1-SLX4 by detailing the crystal structure of Candida glabrata (Cg) Slx1 alone and in combination with the C-terminal region of Slx4. The structure of Slx1 reveals a compact arrangement of the GIY-YIG nuclease and RING domains, which is reinforced by a long α helix. Slx1 forms a stable homodimer that blocks its active site. Slx1-Slx4 interaction is mutually exclusive with Slx1 homodimerization, suggesting a mechanism for Slx1 activation by Slx4

    Coulomb excitation of 222Rn

    Get PDF
    The nature of quadrupole and octupole collectivity in 222Rn was investigated by determining the electricquadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive 222Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball gamma -ray spectrometer following the bombardment of two targets, 120Sn and 60Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10 h over bar and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11) e fm2. The values of the intrinsic electric-octupole moment for the 0+ -> 3- and 2+ -> 5- transitions were found to be respectively -210 e fm3 and 2300+300-500 e fm3 while a smaller value, 1200+500-900 e fm3, was found for the 2+ -> 1- transition. In addition, four excited non-yrast states were identified in this work via gamma -gamma coincidences.Peer reviewe

    Quadrupole collectivity in Ca 42 from low-energy Coulomb excitation with AGATA

    Get PDF
    A Coulomb-excitation experiment to study electromagnetic properties of Ca42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. Îł rays from excited states in Ca42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca42, including the diagonal E2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2+ and 21,2+ states, as well as triaxiality for 01,2+ states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca42

    Superdeformed and Triaxial States in Ca 42

    Get PDF
    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∌40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time
    • 

    corecore