121 research outputs found

    First Miocene rodent from Lebanon provides the 'missing link' between Asian and African gundis (Rodentia: Ctenodactylidae)

    Get PDF
    International audience5 Ctenodactylinae (gundis) is a clade of rodents that experienced, in Miocene time, their greatest diversification and widest distribution. They expanded from the Far East, their area of origin, to Africa, which they entered from what would become the Arabian Peninsula. Questions concerning the origin of African Ctenodactylinae persist essentially because of a poor fossil record from the Miocene of Afro-Arabia. However, recent excavations in the Late Miocene of Lebanon have yielded a key taxon for our understanding of these issues. Proafricanomys libanensis nov. gen. nov. sp. shares a variety of dental characters with both the most primitive and derived members of the subfamily. A cladistic analysis demonstrates that this species is the sister taxon to a clade encompassing all but one of the African ctenodactylines, plus a southern European species of obvious African extraction. As such, Proafricanomys provides the 'missing link' between the Asian and African gundis. The Ctenodactylinae is a subgroup of the Ctenodactylidae (Ctenohystrica) that likely appeared around the Oligocene-Miocene boundary. These unique animals have since experienced a remarkable evolution involving both a shift in habitats (from moist to arid) and distribution (from Asia to Africa). Our understanding of the phylogenetic relationships within the clade has been recently much improve

    Neurocranial osteology and neuroanatomy of a Late Cretaceous Titanosaurian sauropod from Spain (Ampelosaurus sp.)

    Get PDF
    Titanosaurians were a flourishing group of sauropod dinosaurs during Cretaceous times. Fossils of titanosaurians have been found on all continents and their remains are abundant in a number of Late Cretaceous sites. Nonetheless, the cranial anatomy of titanosaurians is still very poorly known. The Spanish latest Cretaceous locality of >Lo Hueco> yielded a relatively well preserved, titanosaurian braincase, which shares a number of phylogenetically restricted characters with Ampelosaurus atacis from France such as a flat occipital region. However, it appears to differ from A. atacis in some traits such as the greater degree of dorsoventral compression and the presence of proatlas facets. The specimen is, therefore, provisionally identified as Ampelosaurus sp. It was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. Our investigation highlights that, although titanosaurs were derived sauropods with a successful evolutionary history, they present a remarkably modest level of paleoneurological organization. Compared with the condition in the basal titanosauriform Giraffatitan brancai, the labyrinth of Ampelosaurus sp. shows a reduced morphology. The latter feature is possibly related to a restricted range of head-turning movements. © 2013 Knoll et al.This is a contribution to the research project CGL2009-12143 (Ministerio de Economı´a y Competitividad, Madrid), of which FK, who is currently supported by the Ramo´n y Cajal Program, is Principal Investigator.Peer Reviewe

    Causal evidence between monsoon and evolution of rhizomyine rodents

    Get PDF
    The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence

    Neurocranial osteology and neuroanatomy of a late Cretaceous Titanosaurian Sauropod from Spain (Ampelosaurus sp.)

    Get PDF
    Titanosaurians were a flourishing group of sauropod dinosaurs during Cretaceous times. Fossils of titanosaurians have been found on all continents and their remains are abundant in a number of Late Cretaceous sites. Nonetheless, the cranial anatomy of titanosaurians is still very poorly known. The Spanish latest Cretaceous locality of "Lo Hueco" yielded a relatively well preserved, titanosaurian braincase, which shares a number of phylogenetically restricted characters with Ampelosaurus atacis from France such as a flat occipital region. However, it appears to differ from A. atacis in some traits such as the greater degree of dorsoventral compression and the presence of proatlas facets. The specimen is, therefore, provisionally identified as Ampelosaurus sp. It was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. Our investigation highlights that, although titanosaurs were derived sauropods with a successful evolutionary history, they present a remarkably modest level of paleoneurological organization. Compared with the condition in the basal titanosauriform Giraffatitan brancai, the labyrinth of Ampelosaurus sp. shows a reduced morphology. The latter feature is possibly related to a restricted range of head-turning movementsThis is a contribution to the research project CGL2009-12143 (Ministerio de Economía y Competitividad, Madrid), of which FK, who is currently supported by the Ramón y Cajal Program, is Principal Investigator. LMW and RCR acknowledge funding support from the United States National Science Foundation (IBN-9601174, IBN-0343744, IOB-0517257, IOS-1050154) and the Ohio University Heritage College of Osteopathic Medicine. The Ohio Supercomputing Center also provided suppor

    The Braincase of the Basal Sauropod Dinosaur Spinophorosaurus and 3D Reconstructions of the Cranial Endocast and Inner Ear

    Get PDF
    Background: Sauropod dinosaurs were the largest animals ever to walk on land, and, as a result, the evolution of their remarkable adaptations has been of great interest. The braincase is of particular interest because it houses the brain and inner ear. However, only a few studies of these structures in sauropods are available to date. Because of the phylogenetic position of Spinophorosaurus nigerensis as a basal eusauropod, the braincase has the potential to provide key evidence on the evolutionary transition relative to other dinosaurs. Methodology/Principal Findings: The only known braincase of Spinophorosaurus (‘Argiles de l'Irhazer’, Irhazer Group; Agadez region, Niger) differs significantly from those of the Jurassic sauropods examined, except potentially for Atlasaurus imelakei (Tilougguit Formation, Morocco). The basisphenoids of Spinophorosaurus and Atlasaurus bear basipterygoid processes that are comparable in being directed strongly caudally. The Spinophorosaurus specimen was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. The endocast resembles that of most other sauropods in having well-marked pontine and cerebral flexures, a large and oblong pituitary fossa, and in having the brain structure obscured by the former existence of relatively thick meninges and dural venous sinuses. The labyrinth is characterized by long and proportionally slender semicircular canals. This condition recalls, in particular, that of the basal non-sauropod sauropodomorph Massospondylus and the basal titanosauriform Giraffatitan. Conclusions/Significance: Spinophorosaurus has a moderately derived paleoneuroanatomical pattern. In contrast to what might be expected early within a lineage leading to plant-eating graviportal quadrupeds, Spinophorosaurus and other (but not all) sauropodomorphs show no reduction of the vestibular apparatus of the inner ear. This character-state is possibly a primitive retention in Spinophorosaurus, but due the scarcity of data it remains unclear whether it is also the case in the various later sauropods in which it is present or whether it has developed homoplastically in these taxa. Any interpretations remain tentative pending the more comprehensive quantitative analysis underway, but the size and morphology of the labyrinth of sauropodomorphs may be related to neck length and mobility, among other factors.The sojourns of Dr. Knoll in the Museum für Naturkunde (Berlin) were partly funded by the Alexander von Humboldt Foundation through a sponsorship of renewed research stay in Germany and by the European Community Research Infrastructure Action under the FP7 “Capacities” Program through a Synthesys grant (http://www.synthesys.info/). Dr. Knoll is currently supported by the Ramón y Cajal Program. This is a contribution to the research project CGL2009-12143, from the Ministerio de Ciencia e Innovación (Madrid), conducted by Dr. Knoll (PI), Dr. Witmer, and Dr. Schwarz-Wings. Dr. Witmer and Dr. Ridgely acknowledge funding support from the United States National Science Foundation (IBN-9601174, IBN-0343744, IOB-0517257) and the Ohio University Heritage College of Osteopathic Medicine. The Ohio Supercomputing Center also provided support.Peer reviewe

    The biota of the Upper Cretaceous site of Lo Hueco (Cuenca, Spain)

    Get PDF
    The Late Cretaceous (Campanian-Maastrichtian) fossil site of Lo Hueco was recently discovered close to the village of Fuentes (Cuenca, Spain) during the cutting of a little hill for installation of the railway of the Madrid-Levante high-speed train. To date, it has yielded a rich collection of well-preserved Cretaceous macrofossils, including plants, invertebrates, and vertebrates. The recovered fossil assemblage is mainly composed of plants, molluscs (bivalves and gastropods), actinopterygians and teleosteans fishes, amphibians, panpleurodiran (bothremydids) and pancryptodiran turtles, squamate lizards, eusuchian crocodyliforms, rhabdodontid ornithopods, theropods (mainly dromaeosaurids), and titanosaur sauropods. This assemblage was deposited in a near-coast continental muddy floodplain crossed by distributary sandy channels, exposed intermittently to brackish or marine and freshwater flooding as well as to partial or total desiccation events.The Konzentrat-Lagerstatt of Lo Hueco constitutes a singular accumulation of fossils representing individuals of some particular lineages of continental tetrapods, especially titanosaurs, eusuchians and bothremydid turtles. In the case of the titanosaurs, the site has yielded multiple partial skeletons in anatomical connection or with a low dispersion of their skeletal elements. A combination of new taxa, new records of taxa previously known in the Iberian Peninsula, and relatively common taxa in the European record compose the Lo Hueco biota. The particular conditions of the fossil site of Lo Hueco and the preliminary results indicate that the analysis of the geological context, the floral and faunal content, and the taphonomical features of the site provide elements that will be especially useful for reassess the evolutionary history of some lineages of European Late Cretaceous reptiles.Peer reviewe

    Revision of Varanus marathonensis (Squamata, Varanidae) based on historical and new material: morphology, systematics, and paleobiogeography of the European monitor lizards

    Get PDF
    Monitor lizards (genus Varanus) inhabited Europe at least from the early Miocene to the Pleistocene. Their fossil record is limited to about 40 localities that have provided mostly isolated vertebrae. Due to the poor diagnostic value of these fossils, it was recently claimed that all the European species described prior to the 21st century are not taxonomically valid and a new species, Varanus amnhophilis, was erected on the basis of fragmentary material including cranial elements, from the late Miocene of Samos (Greece). We re-examined the type material of Varanus marathonensis Weithofer, 1888, based on material from the late Miocene of Pikermi (Greece), and concluded that it is a valid, diagnosable species. Previously unpublished Iberian material from the Aragonian (middle Miocene) of Abocador de Can Mata (Vallès-Penedès Basin, Barcelona) and the Vallesian (late Miocene) of Batallones (Madrid Basin) is clearly referable to the same species on a morphological basis, further enabling to provide an emended diagnosis for this species. Varanus amnhophilis appears to be a junior subjective synonym of V. marathonensis. On the basis of the most complete fossil Varanus skeleton ever described, it has been possible to further resolve the internal phylogeny of this genus by cladistically analyzing 80 taxa coded for 495 morphological and 5729 molecular characters. Varanus marathonensis was a large-sized species distributed at relatively low latitudes in both southwestern and southeastern Europe from at least MN7+8 to MN12. Our cladistic analysis nests V. marathonensis into an eastern clade of Varanus instead of the African clade comprising Varanus griseus, to which it had been related in the past. At least two different Varanus lineages were present in Europe during the Neogene, represented by Varanus mokrensis (early Miocene) and V. marathonensis (middle to late Miocene), respectively

    Untangling the dinosaur family tree

    Get PDF
    For over a century, the standard classification scheme has split dinosaurs into two fundamental groups: ‘lizard-hipped’ saurischians (including meat-eating theropods and long-necked sauropodomorphs) and ‘bird-hipped’ ornithischians (including a variety of herbivorous species).In a recent paper, Baron et al. challenged this paradigm with a new phylogenetic analysis that places theropods and ornithischians together in a group called Ornithoscelida, to the exclusion of sauropodomorphs, and used their phylogeny to argue that dinosaurs may have originated in northern Pangaea, not in the southern part of the supercontinent, as has more commonly been considered. Here we evaluate and reanalyse the morphological dataset underpinning the proposal by Baron et al. and provide quantitative biogeographic analyses, which challenge the key results of their study by recovering a classical monophyletic Saurischia and a Gondwanan origin for dinosaurs. This shows that the Ornithoscelida hypothesis is not the final word, and that there is still great uncertainty around the basic structure of the dinosaur family tree.Fil: Langer, Max C.. Universidade de Sao Paulo; BrasilFil: Ezcurra, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Rauhut, Oliver Walter Mischa. Ludwig Maximilians Universitat; AlemaniaFil: Benton, Michael J.. University of Bristol; Reino UnidoFil: Knoll, Fabien. University of Manchester; Reino UnidoFil: McPhee, Blair W.. Universidade de Sao Paulo; BrasilFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Pol, Diego. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Brusatte, Stephen L.. University of Edinburgh; Reino Unid

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
    corecore