618 research outputs found

    Molecular Spiders with Memory

    Full text link
    Synthetic bio-molecular spiders with "legs" made of single-stranded segments of DNA can move on a surface which is also covered by single-stranded segments of DNA complementary to the leg DNA. In experimental realizations, when a leg detaches from a segment of the surface for the first time it alters that segment, and legs subsequently bound to these altered segments more weakly. Inspired by these experiments we investigate spiders moving along a one-dimensional substrate, whose legs leave newly visited sites at a slower rate than revisited sites. For a random walk (one-leg spider) the slowdown does not effect the long time behavior. For a bipedal spider, however, the slowdown generates an effective bias towards unvisited sites, and the spider behaves similarly to the excited walk. Surprisingly, the slowing down of the spider at new sites increases the diffusion coefficient and accelerates the growth of the number of visited sites.Comment: 10 pages, 3 figure

    Random walks of molecular motors arising from diffusional encounters with immobilized filaments

    Full text link
    Movements of molecular motors on cytoskeletal filaments are described by directed walks on a line. Detachment from this line is allowed to occur with a small probability. Motion in the surrounding fluid is described by symmetric random walks. Effects of detachment and reattachment are calculated by an analytical solution of the master equation in two and three dimensions. Results are obtained for the fraction of bound motors, their average velocity and displacement. The diffusion coefficient parallel to the filament becomes anomalously large since detachment and subsequent reattachment, in the presence of directed motion of the bound motors, leads to a broadening of the density distribution. The occurrence of protofilaments on a microtubule is modeled by internal states of the binding sites. After a transient time all protofilaments become equally populated.Comment: 20 pages Phys Rev E format + 11 figure

    On two-dimensional Bessel functions

    Get PDF
    The general properties of two-dimensional generalized Bessel functions are discussed. Various asymptotic approximations are derived and applied to analyze the basic structure of the two-dimensional Bessel functions as well as their nodal lines.Comment: 25 pages, 17 figure

    Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic

    Full text link
    First we consider a unidirectional flux \omega_bar of vehicles each of which is characterized by its `natural' velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight `world lines' in the time-space plane, with overtaking events represented by a fixed queuing time tau imposed on the overtaking vehicle. This geometrical model exhibits platoon formation and allows, among many other things, for the calculation of the effective average velocity w=\phi(v) of a vehicle of natural velocity v. Secondly, we extend the model to two opposite lanes, A and B. We argue that the queuing time \tau in one lane is determined by the traffic density in the opposite lane. On the basis of reasonable additional assumptions we establish a set of equations that couple the two lanes and can be solved numerically. It appears that above a critical value \omega_bar_c of the control parameter \omega_bar the symmetry between the lanes is spontaneously broken: there is a slow lane where long platoons form behind the slowest vehicles, and a fast lane where overtaking is easy due to the wide spacing between the platoons in the opposite direction. A variant of the model is studied in which the spatial vehicle density \rho_bar rather than the flux \omega_bar is the control parameter. Unequal fluxes \omega_bar_A and \omega_bar_B in the two lanes are also considered. The symmetry breaking phenomenon exhibited by this model, even though no doubt hard to observe in pure form in real-life traffic, nevertheless indicates a tendency of such traffic.Comment: 50 pages, 16 figures; extra references adde

    Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer

    Full text link
    Nanotube patterning may occur naturally upon the spontaneous self-assembly of biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It results in periodically alternating bands of surface properties, ranging from relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single Chain Mean Field (SCMF) theory has been used to estimate the free energy of systems in which a surface patterned nanotube penetrates a phospholipid bilayer. In contrast to un-patterned nanotubes with uniform surface properties, certain patterned nanotubes have been identified that display a relatively low and approximately constant system free energy (10 kT) as the nanotube traverses through the bilayer. These observations support the hypothesis that the spontaneous self-assembly of bio-molecules on the surface of SWNTs may facilitate nanotube transduction through cell membranes.Comment: Published in ACS Nano http://pubs.acs.org/doi/abs/10.1021/nn102763

    Invariant Distribution of Promoter Activities in Escherichia coli

    Get PDF
    Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest design constraints that shape the allocation of transcriptional resources

    Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities

    Get PDF
    Background The dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (Po) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction. Scope We asked a group of experts to consider the global issues associated with Po in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the Po cycle, and to set priorities for Po research. Conclusions We identified seven key opportunities for Po research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of Po in natural and managed systems; the role of microorganisms in controlling Po cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the Po research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems

    Microtubule sliding activity of a kinesin-8 promotes spindle assembly and spindle length control

    Get PDF
    Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by cross-linking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report for the first time on an anti-parallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule destabilizing activity. In conjunction with kinesin-5/Cin8, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a “slide-disassemble” model where Kip3’s sliding and destabilizing activity balance during pre-anaphase. This facilitates normal spindle assembly. However, Kip3’s destabilizing activity dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly

    Spatial distribution of organic carbon in the Atacama Desert, Chile

    Get PDF
    The Atacama Desert in northern Chile is known as the driest region on earth; however traces of life, can still be found. Soils are the habitat and reservoir for plants and microorganisms, which leave their fingerprints as organic residues. Here we identify and quantify organic carbon in soil profiles and along potential plant dispersal corridors in the Atacama Desert. We hypothesize that preferential pathways or barriers of the dispersal of life exist, which can be related to soil properties such as bulk density. We further assume that due to dust and salt accumulation at the surface, in particular the subsoils will reveal an unique though little explored archive of organic matter. The analytical assessment of Corg at very low levels is challenging. It was found that SOC in hyperarid soils ranged from 1.8 – 125 µg C per g soil for 0-1 m (1). We here present an improved Corg analysis, which is based on a temperature gradient method (DIN19539; Soli TOC cube, Elementar, Hanau). This allows combustion of samples with up to 5 g sample weight without the need to remove carbonate. This avoids loss and increases precision of Corg quantification at lowest concentrations. We can show that Corg contents decrease from 1.47 % to 0.1 % in the first 14 km of the gradient. However, first results suggest that within the hyper-arid core of the Atacama Corg contents increase. This gives first hints to the vegetation history of the desert and the dispersal of life

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
    corecore