Synthetic bio-molecular spiders with "legs" made of single-stranded segments
of DNA can move on a surface which is also covered by single-stranded segments
of DNA complementary to the leg DNA. In experimental realizations, when a leg
detaches from a segment of the surface for the first time it alters that
segment, and legs subsequently bound to these altered segments more weakly.
Inspired by these experiments we investigate spiders moving along a
one-dimensional substrate, whose legs leave newly visited sites at a slower
rate than revisited sites. For a random walk (one-leg spider) the slowdown does
not effect the long time behavior. For a bipedal spider, however, the slowdown
generates an effective bias towards unvisited sites, and the spider behaves
similarly to the excited walk. Surprisingly, the slowing down of the spider at
new sites increases the diffusion coefficient and accelerates the growth of the
number of visited sites.Comment: 10 pages, 3 figure