65 research outputs found

    Tiered Approach to Resilience Assessment

    Get PDF
    Regulatory agencies have long adopted a three-tier framework for risk assessment. We build on this structure to propose a tiered approach for resilience assessment that can be integrated into the existing regulatory processes. Comprehensive approaches to assessing resilience at appropriate and operational scales, reconciling analytical complexity as needed with stakeholder needs and resources available, and ultimately creating actionable recommendations to enhance resilience are still lacking. Our proposed framework consists of tiers by which analysts can select resilience assessment and decision support tools to inform associated management actions relative to the scope and urgency of the risk and the capacity of resource managers to improve system resilience. The resilience management framework proposed is not intended to supplant either risk management or the many existing efforts of resilience quantification method development, but instead provide a guide to selecting tools that are appropriate for the given analytic need. The goal of this tiered approach is to intentionally parallel the tiered approach used in regulatory contexts so that resilience assessment might be more easily and quickly integrated into existing structures and with existing policies

    Fundulus as the premier teleost model in environmental biology : opportunities for new insights using genomics

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2 (2007): 257-286, doi:10.1016/j.cbd.2007.09.001.A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.This material is based on work supported by grants from the National Science Foundation DBI-0420504 (LJB), OCE 0308777 (DLC, RNW, BBR), BES-0553523 (AW), IBN 0236494 (BBR), IOB-0519579 (DHE), IOB-0543860 (DWT), FSML-0533189 (SC); National Institute of Health NIEHS P42-ES007381(GVC, MEH), P42-ES10356 (RTD), ES011588 (MFO); and NCRR P20 RR-016463 (DWT); Natural Sciences and Engineering Research Council of Canada Discovery (DLM, TDS, WSM) and Collaborative Research and Development Programs (DLM); NOAA/National Sea Grant NA86RG0052 (LJB), NA16RG2273 (SIK, MEH,GVC, JJS); Environmental Protection Agency U91620701 (WSB), R82902201(SC) and EPA’s Office of Research and Development (DEN)

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Precipitationshed : Concepts, Methods, and Applications

    No full text
    Human societies are reliant on the functioning of the hydrologic cycle. The atmospheric branch of this cycle, often referred to as moisture recycling in the context of land-to-land exchange, refers to water evaporating, traveling through the atmosphere, and falling out as precipitation. Similar to the surface water cycle that uses the watershed as the unit of analysis, it is also possible to consider a ‘watershed of the sky’ for the atmospheric water cycle. Thus, I explore the precipitationshed - defined as the upwind surface of the Earth that provides evaporation that later falls as precipitation in a specific place. The primary contributions of this dissertation are to (a) introduce the precipitationshed concept, (b) provide a quantitative basis for the study of the precipitationshed, and (c) demonstrate its use in the fields of hydrometeorology, land-use change, social-ecological systems, ecosystem services, and environmental governance. In Paper I, the concept of the precipitationshed is introduced and explored for the first time. The quantification of precipitationshed variability is described in Paper II, and the key finding is that the precipitationsheds for multiple regions are persistent in time and space. Moisture recycling is further described as an ecosystem service in Paper III, to integrate the concept into the existing language of environmental sustainability and management. That is, I identify regions where vegetation more strongly regulates the provision of atmospheric water, as well as the regions that more strongly benefit from this regulation. In Paper IV, the precipitationshed is further explored through the lens of urban reliance on moisture recycling. Using a novel method, I quantify the vulnerability of urban areas to social-ecological changes within their precipitationsheds. In Paper V, I argue that successful moisture recycling governance will require flexible, transboundary institutions that are capable of operating within complex social-ecological systems. I conclude that, in the future, the precipitationshed can be a key tool in addressing the complexity of social-ecological systems. At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript. </p

    Strategic logic of unilateral climate intervention

    No full text
    Climate change and unabated greenhouse gas emissions are increasing the possibility that the world will turn to climate intervention to curb ever-increasing global temperatures. This paper uses game theory to elucidate the conditions that might make a state more or less likely to begin unilateral, as opposed to internationally coordinated, climate intervention (UCI). We solve this game for several specific scientific, economic, and climatological conditions that change the likelihood of a government starting its own climate intervention deployment program without the participation of the broader international community. Specifically, we demonstrate that the plausibility of UCI is linked to perceptions of three key elements: (1) the effectiveness of climate intervention strategies, (2) the sensitivity of specific governments to punishment by other states, and (3) satisfaction with climate and weather in the present. We conclude by discussing how this formal game theory model informs the design of future Earth system model simulations of UCI, international agreements related to climate intervention, and the development of solar climate intervention technologies

    Precipitationshed data for the moisture recycling analysis within the article "Megacity precipitationsheds reveal tele-connected water security challenges"

    Get PDF
    These data are the output of a global moisture tracking model. There are output files for 29 megacities from the original analysis. Each file contains a globally gridded dataset of evaporation that eventually falls as precipitation in each of the megacity regions, i.e. precipitationshed data. The data is in a Matlab matrix, with dimensions of [years, months, latitude, longitude]. For additional details on how the data were produces, please query the original publication.Urbanization is a global process that has taken billions of people from the rural countryside to concentrated urban centers, adding pressure to existing water resources. Many cities are specifically reliant on renewable freshwater regularly refilled by precipitation, rather than fossil groundwater or desalination. A precipitationshed can be considered the "watershed of the sky" and identifies the origin of precipitation falling in a given region. In this paper, we use this concept to determine the sources of precipitation that supply renewable water in the watersheds of the largest cities of the world. We quantify the sources of precipitation for 29 megacities and analyze their differences between dry and wet years. Our results reveal that 19 of 29 megacities depend for more than a third of their water supply on evaporation from land. We also show that for many of the megacities, the terrestrial dependence is higher in dry years. This high dependence on terrestrial evaporation for their precipitation exposes these cities to potential land-use change that could reduce the evaporation that generates precipitation. Combining indicators of water stress, moisture recycling exposure, economic capacity, vegetation-regulated evaporation, vegetation-regulated runoff, land-use change, and dry-season moisture recycling sensitivity reveals five highly vulnerable megacities (Karachi, Bengalaru, Delhi, Istanbul, and Wuhan). A further nine megacities were found to have medium vulnerability with regard to their water supply. We conclude that understanding how upwind landscapes affect downwind municipal water resources could be a key component for understanding the complexity of urban water security.The Swedish Research Council, FORMAS
    • …
    corecore