4,345 research outputs found

    Clumpy Disc and Bulge Formation

    Get PDF
    We present a set of hydrodynamical/Nbody controlled simulations of isolated gas rich galaxies that self-consistently include SN feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star forming galaxies at z ~ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which in general, are not easily disrupted on timescales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sersic index, n > 2. Our physically-motivated Supernova feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per Supernova event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our Supernova feedback model is able to establish a self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexit with other channels of bulge assembly such as bar and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.Comment: Accepted for publication in MNRAS - Aug. 20, 201

    Filtenna Integration Achieving Ideal Chebyshev Return Losses

    Get PDF
    This paper demonstrates that it is possible to find an ideal filter response (Chebyshew, Butterworth,..) considering the antenna as the last resonator of a filter under certain circumstances related with the antenna performance and the bandwidth of the filtenna device. If these circumstances are not accomplished, we can achieve excellent performance as well, by means of an iterative process the goal of which is defined by either a filter mask or a classical filter function itself. The methodology is based on the conventional coupling matrix technique for filter design and has been validated by fabricating a microstrip prototype using hairpin resonators and a rectangular patch antenna

    On the Structure of Dark Matter Halos at the Damping Scale of the Power Spectrum with and without Relict Velocities

    Full text link
    We report a series of high-resolution cosmological N-body simulations designed to explore the formation and properties of dark matter halos with masses close to the damping scale of the primordial power spectrum of density fluctuations. We further investigate the effect that the addition of a random component, v_rms, into the particle velocity field has on the structure of halos. We adopted as a fiducial model the Lambda Warm Dark Matter cosmology with a non-thermal sterile neutrino mass of 0.5 keV. The filtering mass corresponds then to M_f = 2.6x10^12 M_sun/h. Halos of masses close to M_f were simulated with several million of particles. The results show that, on one hand, the inner density slope of these halos (at radii <~0.02 the virial radius Rvir) is systematically steeper than the one corresponding to the NFW fit or to the CDM counterpart. On the other hand, the overall density profile (radii larger than 0.02Rvir) is less curved and less concentrated than the NFW fit, with an outer slope shallower than -3. For simulations with v_rms, the inner halo density profiles flatten significantly at radii smaller than 2-3 kpc/h (<~0.010-0.015Rvir). A constant density core is not detected in our simulations, with the exception of one halo for which the flat core radius is ~1 kpc/h. Nevertheless, if ``cored'' density profiles are used to fit the halo profiles, the inferred core radii are ~0.1-0.8 kpc/h, in rough agreement with theoretical predictions based on phase-space constrains, and on dynamical models of warm gravitational collapse. A reduction of v_rms by a factor of 3 produces a modest decrease in core radii, less than a factor of 1.5. We discuss the extension of our results into several contexts, for example, to the structure of the cold DM micro-halos at the damping scale of this model.Comment: 13 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Get PDF
    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large resistivity of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.Comment: 14 pages, 6 figures. Accepted in 2D Materials. https://doi.org/10.1088/2053-1583/aa882

    Forming Disk Galaxies in Lambda CDM Simulations

    Full text link
    We used fully cosmological, high resolution N-body + SPH simulations to follow the formation of disk galaxies with rotational velocities between 135 and 270 km/sec in a Lambda CDM universe. The simulations include gas cooling, star formation, the effects of a uniform UV background and a physically motivated description of feedback from supernovae. The host dark matter halos have a spin and last major merger redshift typical of galaxy sized halos as measured in recent large scale N--Body simulations. The simulated galaxies form rotationally supported disks with realistic exponential scale lengths and fall on both the I-band and baryonic Tully Fisher relations. An extended stellar disk forms inside the Milky Way sized halo immediately after the last major merger. The combination of UV background and SN feedback drastically reduces the number of visible satellites orbiting inside a Milky Way sized halo, bringing it in fair agreement with observations. Our simulations predict that the average age of a primary galaxy's stellar population decreases with mass, because feedback delays star formation in less massive galaxies. Galaxies have stellar masses and current star formation rates as a function of total mass that are in good agreement with observational data. We discuss how both high mass and force resolution and a realistic description of star formation and feedback are important ingredients to match the observed properties of galaxies.Comment: Revised version after the referee's comments. Conclusions unchanged. 2 new plots. MNRAS in press. 20 plots. 21 page

    Optical Response for the d-density wave model

    Full text link
    We have calculated the optical conductivity and the Raman response for the d-density wave model, proposed as a possible explanation for the pseudogap seen in high Tc cuprates. The total optical spectral weight remains approximately constant on opening of the pseudogap for fixed temperature. This occurs because there is a transfer of weight from the Drude peak to interband transitions across the pseudogap. The interband peak in the optical conductivity is prominent but becomes progressively reduced with increasing temperature, with impurity scattering, which distributes it over a larger energy range, and with ineleastic scattering which can also shift its position, making it difficult to have a direct determination of the value of the pseudogap. Corresponding structure is seen in the optical scattering rate, but not necessarily at the same energies as in the conductivity.Comment: 14 pages, 15 figures, final revised version published in PR

    Possible ring material around centaur (2060) Chiron

    Get PDF
    We propose that several short duration events observed in past stellar occultations by Chiron were produced by rings material. From a reanalysis of the stellar occultation data in the literature we determined two possible orientations of the pole of Chiron's rings, with ecliptic coordinates l=(352+/-10) deg, b=(37+/-10) deg or l=(144+/-10) deg, b=(24+/-10) deg . The mean radius of the rings is (324 +/- 10) km. One can use the rotational lightcurve amplitude of Chiron at different epochs to distinguish between the two solutions for the pole. Both imply lower lightcurve amplitude in 2013 than in 1988, when the rotational lightcurve was first determined. We derived Chiron's rotational lightcurve in 2013 from observations at the 1.23-m CAHA telescope and indeed its amplitude is smaller than in 1988. We also present a rotational lightcurve in 2000 from images taken at CASLEO 2.15-m telescope that is consistent with our predictions. Out of the two poles the l=(144+/-10) deg, b=(24+/-10) deg solution provides a better match to a compilation of rotational lightcurve amplitudes from the literature and those presented here. We also show that using this preferred pole, Chiron's long term brightness variations are compatible with a simple model that incorporates the changing brightness of the rings as the tilt angle with respect to the Earth changes with time. Also, the variability of the water ice band in Chiron's spectra in the literature can be explained to a large degree by an icy ring system whose tilt angle changes with time and whose composition includes water ice, analogously to the case of Chariklo. We present several possible formation scenarios for the rings from qualitative points of view and speculate on the reasons why rings might be common in centaurs. We speculate on whether the known bimodal color distribution of centaurs could be due to presence of rings and lack of them

    Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score.

    Get PDF
    To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients

    On the use of sniffers for spectrum occupancy measurements of Bluetooth low energy primary channels

    Get PDF
    The methods usually employed to measure channel occupancy show limitations in the context of Bluetooth Low Energy (BLE) advertisements. We propose and analyze the use of BLE sniffers as light and portable low-cost spectrum occupancy meters to be used in scenarios where real time signal analyzers are not adequate. For the measurement technique to be successful, several low-level effects must be considered. The paper argues about on-air time, receiving blind times due to processing and intra system interference, buffer saturation and frequency anchoring. Hence, a compensation procedure based on collision rate estimation is proposed. Results with the refined method show that occupancies of 40% can be measured with an overestimation error whose percentile 95% is 5 percentage points. This is reduced to 1.9 points when the occupancy is 15%. The sniffers perform in real time and are shown to correctly track short term load variations. The strategy has been successfully used to characterize occupancy in highly variable and loaded scenarios such as subway platforms and a shopping mall. Values up to 25% have been observed, which implies a relevant packet error rate. Hence, the tool can be used to make agile audits and configure the parameters that control communication redundancy in new or existing networks
    corecore