4,345 research outputs found
Clumpy Disc and Bulge Formation
We present a set of hydrodynamical/Nbody controlled simulations of isolated
gas rich galaxies that self-consistently include SN feedback and a detailed
chemical evolution model, both tested in cosmological simulations. The initial
conditions are motivated by the observed star forming galaxies at z ~ 2-3. We
find that the presence of a multiphase interstellar media in our models
promotes the growth of disc instability favouring the formation of clumps which
in general, are not easily disrupted on timescales compared to the migration
time. We show that stellar clumps migrate towards the central region and
contribute to form a classical-like bulge with a Sersic index, n > 2. Our
physically-motivated Supernova feedback has a mild influence on clump survival
and evolution, partially limiting the mass growth of clumps as the energy
released per Supernova event is increased, with the consequent flattening of
the bulge profile. This regulation does not prevent the building of a
classical-like bulge even for the most energetic feedback tested. Our Supernova
feedback model is able to establish a self-regulated star formation, producing
mass-loaded outflows and stellar age spreads comparable to observations. We
find that the bulge formation by clumps may coexit with other channels of bulge
assembly such as bar and mergers. Our results suggest that galactic bulges
could be interpreted as composite systems with structural components and
stellar populations storing archaeological information of the dynamical history
of their galaxy.Comment: Accepted for publication in MNRAS - Aug. 20, 201
Filtenna Integration Achieving Ideal Chebyshev Return Losses
This paper demonstrates that it is possible to find an ideal filter response (Chebyshew, Butterworth,..) considering the antenna as the last resonator of a filter under certain circumstances related with the antenna performance and the bandwidth of the filtenna device. If these circumstances are not accomplished, we can achieve excellent performance as well, by means of an iterative process the goal of which is defined by either a filter mask or a classical filter function itself. The methodology is based on the conventional coupling matrix technique for filter design and has been validated by fabricating a microstrip prototype using hairpin resonators and a rectangular patch antenna
On the Structure of Dark Matter Halos at the Damping Scale of the Power Spectrum with and without Relict Velocities
We report a series of high-resolution cosmological N-body simulations
designed to explore the formation and properties of dark matter halos with
masses close to the damping scale of the primordial power spectrum of density
fluctuations. We further investigate the effect that the addition of a random
component, v_rms, into the particle velocity field has on the structure of
halos. We adopted as a fiducial model the Lambda Warm Dark Matter cosmology
with a non-thermal sterile neutrino mass of 0.5 keV. The filtering mass
corresponds then to M_f = 2.6x10^12 M_sun/h. Halos of masses close to M_f were
simulated with several million of particles. The results show that, on one
hand, the inner density slope of these halos (at radii <~0.02 the virial radius
Rvir) is systematically steeper than the one corresponding to the NFW fit or to
the CDM counterpart. On the other hand, the overall density profile (radii
larger than 0.02Rvir) is less curved and less concentrated than the NFW fit,
with an outer slope shallower than -3. For simulations with v_rms, the inner
halo density profiles flatten significantly at radii smaller than 2-3 kpc/h
(<~0.010-0.015Rvir). A constant density core is not detected in our
simulations, with the exception of one halo for which the flat core radius is
~1 kpc/h. Nevertheless, if ``cored'' density profiles are used to fit the halo
profiles, the inferred core radii are ~0.1-0.8 kpc/h, in rough agreement with
theoretical predictions based on phase-space constrains, and on dynamical
models of warm gravitational collapse. A reduction of v_rms by a factor of 3
produces a modest decrease in core radii, less than a factor of 1.5. We discuss
the extension of our results into several contexts, for example, to the
structure of the cold DM micro-halos at the damping scale of this model.Comment: 13 pages, 6 figures, accepted for publication in The Astrophysical
Journa
Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
Spin Hall effects have surged as promising phenomena for spin logics
operations without ferromagnets. However, the magnitude of the detected
electric signals at room temperature in metallic systems has been so far
underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the
signal in monolayer graphene/Pt devices when compared to their fully metallic
counterparts. The enhancement stems in part from efficient spin injection and
the large resistivity of graphene but we also observe 100% spin absorption in
Pt and find an unusually large effective spin Hall angle of up to 0.15. The
large spin-to-charge conversion allows us to characterise spin precession in
graphene under the presence of a magnetic field. Furthermore, by developing an
analytical model based on the 1D diffusive spin-transport, we demonstrate that
the effective spin-relaxation time in graphene can be accurately determined
using the (inverse) spin Hall effect as a means of detection. This is a
necessary step to gather full understanding of the consequences of spin
absorption in spin Hall devices, which is known to suppress effective spin
lifetimes in both metallic and graphene systems.Comment: 14 pages, 6 figures. Accepted in 2D Materials.
https://doi.org/10.1088/2053-1583/aa882
Forming Disk Galaxies in Lambda CDM Simulations
We used fully cosmological, high resolution N-body + SPH simulations to
follow the formation of disk galaxies with rotational velocities between 135
and 270 km/sec in a Lambda CDM universe. The simulations include gas cooling,
star formation, the effects of a uniform UV background and a physically
motivated description of feedback from supernovae. The host dark matter halos
have a spin and last major merger redshift typical of galaxy sized halos as
measured in recent large scale N--Body simulations. The simulated galaxies form
rotationally supported disks with realistic exponential scale lengths and fall
on both the I-band and baryonic Tully Fisher relations. An extended stellar
disk forms inside the Milky Way sized halo immediately after the last major
merger. The combination of UV background and SN feedback drastically reduces
the number of visible satellites orbiting inside a Milky Way sized halo,
bringing it in fair agreement with observations. Our simulations predict that
the average age of a primary galaxy's stellar population decreases with mass,
because feedback delays star formation in less massive galaxies. Galaxies have
stellar masses and current star formation rates as a function of total mass
that are in good agreement with observational data. We discuss how both high
mass and force resolution and a realistic description of star formation and
feedback are important ingredients to match the observed properties of
galaxies.Comment: Revised version after the referee's comments. Conclusions unchanged.
2 new plots. MNRAS in press. 20 plots. 21 page
Optical Response for the d-density wave model
We have calculated the optical conductivity and the Raman response for the
d-density wave model, proposed as a possible explanation for the pseudogap seen
in high Tc cuprates. The total optical spectral weight remains approximately
constant on opening of the pseudogap for fixed temperature. This occurs because
there is a transfer of weight from the Drude peak to interband transitions
across the pseudogap. The interband peak in the optical conductivity is
prominent but becomes progressively reduced with increasing temperature, with
impurity scattering, which distributes it over a larger energy range, and with
ineleastic scattering which can also shift its position, making it difficult to
have a direct determination of the value of the pseudogap. Corresponding
structure is seen in the optical scattering rate, but not necessarily at the
same energies as in the conductivity.Comment: 14 pages, 15 figures, final revised version published in PR
Possible ring material around centaur (2060) Chiron
We propose that several short duration events observed in past stellar
occultations by Chiron were produced by rings material. From a reanalysis of
the stellar occultation data in the literature we determined two possible
orientations of the pole of Chiron's rings, with ecliptic coordinates
l=(352+/-10) deg, b=(37+/-10) deg or l=(144+/-10) deg, b=(24+/-10) deg . The
mean radius of the rings is (324 +/- 10) km. One can use the rotational
lightcurve amplitude of Chiron at different epochs to distinguish between the
two solutions for the pole. Both imply lower lightcurve amplitude in 2013 than
in 1988, when the rotational lightcurve was first determined. We derived
Chiron's rotational lightcurve in 2013 from observations at the 1.23-m CAHA
telescope and indeed its amplitude is smaller than in 1988. We also present a
rotational lightcurve in 2000 from images taken at CASLEO 2.15-m telescope that
is consistent with our predictions. Out of the two poles the l=(144+/-10) deg,
b=(24+/-10) deg solution provides a better match to a compilation of rotational
lightcurve amplitudes from the literature and those presented here. We also
show that using this preferred pole, Chiron's long term brightness variations
are compatible with a simple model that incorporates the changing brightness of
the rings as the tilt angle with respect to the Earth changes with time. Also,
the variability of the water ice band in Chiron's spectra in the literature can
be explained to a large degree by an icy ring system whose tilt angle changes
with time and whose composition includes water ice, analogously to the case of
Chariklo. We present several possible formation scenarios for the rings from
qualitative points of view and speculate on the reasons why rings might be
common in centaurs. We speculate on whether the known bimodal color
distribution of centaurs could be due to presence of rings and lack of them
Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score.
To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients
On the use of sniffers for spectrum occupancy measurements of Bluetooth low energy primary channels
The methods usually employed to measure channel occupancy show limitations in the context of Bluetooth Low Energy (BLE) advertisements. We propose and analyze the use of BLE sniffers as light and portable low-cost spectrum occupancy meters to be used in scenarios where real time signal analyzers are not adequate. For the measurement technique to be successful, several low-level effects must be considered. The paper argues about on-air time, receiving blind times due to processing and intra system interference, buffer saturation and frequency anchoring. Hence, a compensation procedure based on collision rate estimation is proposed. Results with the refined method show that occupancies of 40% can be measured with an overestimation error whose percentile 95% is 5 percentage points. This is reduced to 1.9 points when the occupancy is 15%. The sniffers perform in real time and are shown to correctly track short term load variations. The strategy has been successfully used to characterize occupancy in highly variable and loaded scenarios such as subway platforms and a shopping mall. Values up to 25% have been observed, which implies a relevant packet error rate. Hence, the tool can be used to make agile audits and configure the parameters that control communication redundancy in new or existing networks
- …