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A B S T R A C T   

The methods usually employed to measure channel occupancy show limitations in the context of Bluetooth Low 
Energy (BLE) advertisements. We propose and analyze the use of BLE sniffers as light and portable low-cost 
spectrum occupancy meters to be used in scenarios where real time signal analyzers are not adequate. For the 
measurement technique to be successful, several low-level effects must be considered. The paper argues about 
on-air time, receiving blind times due to processing and intra system interference, buffer saturation and fre
quency anchoring. Hence, a compensation procedure based on collision rate estimation is proposed. Results with 
the refined method show that occupancies of 40% can be measured with an overestimation error whose 
percentile 95% is 5 percentage points. This is reduced to 1.9 points when the occupancy is 15%. The sniffers 
perform in real time and are shown to correctly track short term load variations. The strategy has been suc
cessfully used to characterize occupancy in highly variable and loaded scenarios such as subway platforms and a 
shopping mall. Values up to 25% have been observed, which implies a relevant packet error rate. Hence, the tool 
can be used to make agile audits and configure the parameters that control communication redundancy in new or 
existing networks.   

1. Introduction 

The 2.4 GHz industrial, scientific, and medical (ISM) band is 
massively used to provide wireless communications under a high variety 
of standards and proprietary systems. Among them, Bluetooth, and 
Bluetooth Low Energy (BLE) in particular, is an omnipresent technology 
and a dominant actor in consumer electronics. Annual shipments of BLE 
devices have grown from 3.6 to 4.5 billion in the past five years. And 
despite a one-year shift in forecasts due to the pandemic, annual ship
ments of Bluetooth enabled devices is expected to reach 6.4 billion in 
2025 [1]. 

BLE is characterized by the use of advertising messages that broad
cast the presence of devices. Such primary advertisements are transmitted 
over three carrier frequencies labeled 37, 38 and 39, one after the other. 
They can be used to transmit data (advertising mode) or to start a 
connection between devices (connected mode). When a connection is 
established, the carrier frequency is hopped among the remaining 

37 channels, completely covering the 2.4 GHz band. Such 37 frequencies 
can also be used to extend the primary advertising data capacity. Indeed, 
BLE advertisements and their broadcast messaging capability have 
become enormously popular. 

Bluetooth is present in a vast variety of contexts, vehicular industry, 
consumer electronics, lightning systems, white goods… Most of these 
devices continuously broadcast advertising messages. Primary adver
tisements are also widespread to create beacons [2] that transmit short 
packets for proximity marketing, information points or location services. 
The latter include guidance and indoor positioning [3], asset tracking 
[4], antitheft systems [5] and so on. Remarkably, Bluetooth beaconing is 
one of the proposed technologies for drone remote identification which 
will be mandatory in 2023 in some countries [6]. Bluetooth 5.1 specif
ically promotes the development of high precision positioning applica
tions by allowing to estimate the signal angles of departure and arrival 
[7]. Primary advertisements are also the basis of Bluetooth mesh net
works. They allow direct communication without the need of handshake 
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or association to share messages. This is a notable feature for Industry 
4.0 and spots Bluetooth mesh as a very interesting capillarity network 
[8]. 

Primary channels enjoy some protection against interference from 
other systems. This is due to their spectral location, at the edges of the 
band and out of the main channels of prevalent standards such as those 
based on IEEE 802.11 and 802.15.4, as shown in Fig. 1. This permits to 
minimize the overlap and thus, to maximize the signal to interference 
ratio (SIR). Among the three channels, number 37 (2402 MHz) is almost 
free of interference. On the other hand, number 38 (2426 MHz) is the 
most exposed since it might collide with non-primary IEEE 802.11 
channels and presents adjacent interference with IEEE 802.15.4 g in its 
channel 15 (centered in 2425 MHz). Channel 39 (2480 MHz) collides 
with channel 26 of 802.15.4. However, channel 26 is not allowed in 
several countries and the presence of systems based on this standard is 
still much lower than that of 802.11 networks. Also, some 802.15.4- 
based systems do not use it (e.g. WirelessHART) or define it as 
optional (e.g. ISA 100.11a). For this reason, interference on channel 39 
will generally be low. Nevertheless, if an advertising frequency is 
blocked, the other channels might well be free, given that they are 
several MHz apart. 

On the other hand, intra-system interference can be problematic in 
BLE crowded environments and considering the forecasted technology 
penetration this might become an issue for advertising applications. As 
BLE devices share the access to spectrum, collisions are inevitable. Such 
reliability reduction has effects over the connection delay, the discovery 
process and over the performance of mesh networks. In this case, it is 
highly advisable to perform an audit to measure the occupancy of the 
primary BLE channels. From here, radio engineers could make a correct 
configuration of the parameters that control the communication 
redundancy and/or the mesh layout itself [8]. 

Throughout this paper, we examine the methods usually employed to 
measure channel occupancy and argue about their limitations in the 
context of BLE advertisements. We propose and analyze the use of BLE 
sniffers as a light and portable means to measure occupancy with no 
limits in measurement time while being able to capture very short-term 
variations. We examine low level effects such as processing and blind 
times, induced by intra system interference, and how they even affect 
the occupancy characterization itself. Errors are quantified to establish 
the limits of this approach. Finally, several measurement campaigns 
have been carried out and are analyzed as channel occupancy examples 
to investigate the potential saturation of primary BLE channels. 

This objective is developed along the rest of the paper. Related works 
are commented through the next section. Next, section 3 describes and 
quantifies the required improvements to usual methods and presents 

sniffers as a potential solution. Drawbacks and solutions are also 
investigated. Obtained results are presented in section 4. The last section 
closes the work with our main conclusions. 

2. Related work 

Spectrum surveys on the 2.4 GHz band have been well-reported in 
the scientific literature. The usual methodology relies on sweeping and 
Fast Fourier Transform (FFT) based spectrum analyzers or software 
defined radios acting alike. However, most works relying on this 
methodology focus on IEEE 802.11 Wireless Local Area Networks 
(WLANs) channels. Relevant measurement campaigns are presented in 
[9]. The authors characterize WLAN channels intensively by performing 
two one-week measurement campaigns, taking up to 1250 spectral 
sweeps per minute (a total time of 48 ms per sweep). Another exhaustive 
investigation is done in [10], where eight different locations were 
covered at ten different measurement moments. The occupancy of the 
WLAN channel is analyzed, in this case, with a sampling period of 10 ms. 
The work presented in [11] also investigates several environments in the 
city of Melbourne using a sweep time of 4 ms. The authors of [12] 
analyze spectrum occupancy at 2.4 GHz for cognitive radio applications 
by taking measurements during 24 h with a time resolution of 1 s. The 
researchers in [13] highlight the importance of improving the temporal 
resolution to make a correct characterization of channel occupancy. 
Specifically, they perform a study on WLAN channels by capturing the 
entire band every 205 μs in an unspecified indoor environment. Specific 
BLE spectrum occupancy is hardly addressed. Most works deal with 
connected mode [15,16] with a special focus on inter system interfer
ence and packet error rate (PER) [17]. When performing spectral mea
surements, time resolutions are found to be similar to the previous 
works, for example, [18] utilized a time sweep of 4 ms. 

Sweep and processing times determine the time resolution to revisit a 
certain frequency to be evaluated. Such sampling period has a direct 
impact on the quality of the occupancy estimation. If all packets are to be 
captured, the time resolution should be set considering that BLE primary 
advertising messages can be as short as 128 μs. On the other hand, the 
sampling period is directly proportional to the bandwidth to scan. Also, 
it is inversely proportional to the resolution bandwidth in sweeping 
analyzers or the FFT subcarrier spacing in digital ones. Hence, it must be 
noted that BLE channels occupy 1 MHz, well below other systems 
operating at 2.4 GHz. 

Moreover, the exact detection of the instants when the channel 
switches from occupied to idle (and back) is not possible. This leads to a 
systematic error [19]. Such error is aggravated when the channel is 
occupied by many packets of short duration, which indeed is the case of 

Fig. 1. BLE channel distribution with respect to the main channels of IEEE 802.11 and 802.15.4.  

A. Valenzuela-Pérez et al.                                                                                                                                                                                                                     



Measurement 199 (2022) 111573

3

BLE. For all these reasons, an accurate measurement and characteriza
tion of BLE occupancy imposes more stringent requisites and requires a 
careful study. 

3. Materials and methods 

Many research works that study channel occupancy rely on spectral 
analysis and employ time resolutions that are too large in relation to the 
size of BLE advertising packets. In some cases, such times are several 
orders of magnitude higher than the BLE packets. This implies that many 
of the BLE packets would not be captured. Nevertheless, it is not strictly 
necessary to capture each and every transmission to get the mean oc
cupancy. Since it is a statistical measure, accuracy can be improved by 
accumulating a sufficient number of samples. 

Let us take some of the previous time resolutions as an example, 4 
ms, 50 ms and 1 s. If the actual occupancy is 10% and the estimate must 
have a relative error of less than 5% with a confidence of 99.73% (three 
sigmas), the minimum number of measures required would be 90,000 
(refer to Appendix A). This implies measurement times of 6 min, 75 min 
and 25 h respectively. These values are even higher if we consider that 
samples are not independent. For example, in certain types of adver
tisements that can trigger responses on other devices, or in a BLE mesh 
network with high redundancy, where sending a packet involves new 
subsequent transmissions. These times are excessive for a correct char
acterization of the occupancy of BLE primary channels. This is because 
much of the traffic is generated by mobile devices, and levels are not 
kept constant in such time windows in most environments. Take, for 
instance, concentrations of people on a subway platform or in a shop
ping mall. Time cycles of occupancy are in the order of seconds. For 
example, if load remains constant during 5 s, the required sampling time 
would be of just 56 μs under the premises indicated. Hence, it is 
concluded that time resolution must be reduced far beyond the typically 
used values. 

Our experiments integrate the FSW26 real-time signal analyzer from 
Rohde & Schwarz. This device allows taking I/Q samples with a sam
pling time of 0.8 μs and can store up to 108 samples (complex numbers). 
Hence, it must be noted that the number of samples to store rises as a 
new limiting factor. With the previous sampling time, this means mea
surements of up to 80 s. After this, the data must be cleared and loaded 
to another storage medium to continue with the measurement process. 
So, there is a compromise between accuracy and required measurement 
interruptions, which might well be not acceptable for a correct charac
terization of occupancy variations along time. Additional drawbacks of 
real time signal analyzers are their large volume, weight, transport 
difficulties and the need for an energy source. This makes them an 
impractical tool for many out-of-lab situations. 

3.1. On the use of sniffers for occupancy measurements 

The proposed approach relies on the use of sniffers, devices that are 
often used as protocol analyzers. Sniffers detect, capture, and demodu
late packets of a certain technology. They are typically supplied with a 
small form factor, as a USB dongle. They obtain relevant information 
such as the arrival time of the packet, its duration, the frequency used, 
its signal level, etc. Having the exact moments of arrival and the dura
tion of the advertisements opens the door to use the sniffer as a tool to 
measure the channel occupancy in near-real time and, recording for 
hours, without interruptions. Our investigation is done with the 
nRF52840 and the nRF52832 Bluetooth SoCs from Nordic Semi
conductor and with the CC2652 from Texas Instruments, which show a 
resolution equal to 1 μs, 1 BLE symbol time. Also, it is remarkable their 
low cost, low power consumption, excellent portability, and ease of use:  

• Cost: The price of a development kit that includes a Bluetooth chip 
with sniffer capacity is less than 50 Euros, to which we must add the 
price of a laptop. On the other hand, a signal analyzer capable of 

making lossless captures in real time, and considering the main 
vendors in the market, is around 80,000 Euros and depending on the 
options included.  

• Power consumption: A sniffer and a laptop storing the data would 
not exceed 60 W. While an analyzer can reach peaks of around 1 kW 
when operating in real time mode. This implies that the analyzer 
always requires an available energy point. 

• Portability: The weight of the sniffer-based solution will be deter
mined by the laptop. Therefore, it is generally less than 2 kg. How
ever, an analyzer like the one mentioned usually weighs around 20 
kg. Its dimensions are also much larger than a laptop with a USB 
dongle, they generally exceed 450 mm (of width and depth) and 200 
mm of height.  

• Ease of use: The sniffer-based solution is relatively plug-and-play. It 
just requires the use of Wireshark, the most used protocol analyzer. It 
is needed to add a plug-in to configure the specific channel to 
monitor. The use of a signal analyzer is not trivial, the number of 
parameters to adjust is much higher. Nevertheless, it is usually a 
knowledge that most electrical engineers acquire during their 
training. 

On the other hand, there are some specific problems that must be 
addressed for this approach to be successful. They are a matter of study 
along the rest of this section.  

• Exact occupancy of a given packet 

Sniffers can read the structure of the packet and obtain the number of 
carried payload bits. Thus, they are able to indicate the duration of a 
packet. Of course, this matches the Bluetooth specifications, which set a 
preamble, access address, header, payload and a checksum. However, it 
is important to note that this duration does not match the occupancy 
time. Transceivers in commercial devices occupy the channel for an 
additional time. The rationale behind this is that they must first ramp-up 
in transmission mode (and ramp-down into idle state). So, they generate 
a pre advertisement sequence and after that time, the device is ready to 
initiate a packet transmission. Transmission is ended with a post adver
tisement sequence. They transmit a carrier, which is the result of modu
lating several ’1s’ just before and after the packet structure (Fig. 2). The 
length of this extra time varies depending on the manufacturer and 
version of the hardware. We have characterized it in the lab for over ten 
different Bluetooth vendors and it ranges from 4 to 60 μs.  

• Dealing with post-processing and overlapped packets 

The sniffer cannot properly handle overlapped or too close packets. 
This leads to a number of missed packets that is proportional to the 
number of devices resulting in occupancy underestimation. The 
different causes/situations are explained in detail next. 

Firstly, the sniffer requires a processing time right after decoding an 
advertisement [20]. During that time, channel listening is interrupted. 
This means a potential loss of packets, not only of those that are over
lapping, but also those that are too close in time. It is important to 
remark that such blind times happen every time a new packet is detected 
and received. This implies that the underestimation error is to be 
directly proportional to the channel occupancy. 

This is illustrated in Fig. 3, where the blind time for the nRF52840 is 
characterized. This is done by transmitting two consecutive advertise
ments with a variable controlled separation between them. They are 
generated in Matlab and their I/Q components are fed into a vector 
signal generator (Rohde & Schwarz SMW200), pre and post packet 
carrier sequences of 6.5 μs are included. The spacing is reduced until the 
second advertisement is no longer detected by the sniffer. Then, the 
exact interframe space is measured with a real-time signal analyzer 
(Rhode & Schwarz FSW26). A picture of this set-up is given in Fig. 3a. 
For this device, it is necessary a space of at least 50 μs between both 
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advertisements (Fig. 3b). This means that the gap between actual data 
transmissions is 63 μs (6.5 μs + 50 μs + 6.5 μs). 

The second reason for underestimation is packet loss due to specific 
overlap situations when collisions occur. Collisions may lead to insuf
ficient SIR, which results into corrupt packets that are impossible to 
decode. In this case, the sniffer would not report them, and a falsely null 
occupancy would be assumed. On the other hand, collision/overlap 
situations with sufficient SIR may yield different outcomes. It is neces
sary to understand that the sniffer initiates the receipt of an advertise
ment by retrieving its preamble and access address. These are the first 
five bytes of the packet (see Fig. 2) and are used to recover timing and 
frequency synchronization. With this in mind, it is possible to identify 
several overlapping cases with sufficient SIR. Fig. 4 shows three different 
situations captured in lab and leading to different probabilities of packet 
error and hence, occupancy underestimation as depicted next. The fig
ures represent the received power versus time and the colored boxes 
represent the packets themselves and help to read the plots.  

1. Fig. 4(a): The first packet shows a high received power and it is 
correctly synchronized, though potentially malformed due to the 
overlapping. Its probability of not detection matches its packet error 
rate, PER ≈ 1 − (1 − BER)b, where BER is the bit error rate and b is 
the number of overlapped bits. Note that the BER is a function of the 
experienced SIR. The second packet is lost with probability 1 because 
the sniffer is busy with the first one as already explained. This con
tributes to the occupancy underestimation.  

2. Fig. 4(b): The sniffer starts synchronizing with the first packet, then a 
second advertisement with high relative power overlaps and greatly 
degrades the SIR. All overlapped bits show aBER = 0.5, so the 
packets in that situation are lost with probability PER ≈ 1 − 0.5b. The 
second packet will nearly always be missed, but there is a possibility 
for detection. This happens when it overlaps with the sync sequence 
of the first packet. In this case, the sniffer will get synchronization 
with the second advertisement, which can be recorded thanks to its 
favorable SIR. 

Fig. 2. BLE packet structure defined by the standard and initial and end carriers that increase occupancy.  

Fig. 3. Blind-time due to processing time in sniffer. (a) Measuring set-up. (b) Received power versus time, it can be observed the minimum space between 
consecutive advertisements (50 μs). 

Fig. 4. Overlapping possibilities for advertising packets of different power and sufficient SIR.  
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3. Fig. 4(c): The last case shows overlapping of three different packets. 
The sniffer can demodulate the first one, which has a power level that 
overcomes interference from the second. When it has finished, the 
channel is still occupied by the second packet, which is lost because 
the receiver misses its synchronization sequence. The third packet is 
received because the sniffer detects sync bytes with good SIR. Ad
vertisements like the first and last show a PER ≈ 1 − (1 − BER)b, 
while the second has a PER = 1.  

• Buffer saturation and USB capacity 

Nowadays, there are different Bluetooth devices that can be used as 
sniffers but not all of them would be suitable to perform occupancy 
measurements. It has been observed that the basic hobbyist models 
saturate their buffers quickly. That is, packets are lost due to the device’s 
inability to store and transmit a high volume of packets through the USB 
port. Hence, they would not be adequate to measure on highly loaded 
scenarios. Information about this capability is not present in usual 
specifications. The modules considered in this investigation (nRF52840, 
nRF52832 and CC2652) were able to report occupancies of 40% suc
cessfully and after applying countermeasures to mitigate underestima
tion errors, as described later.  

• Anchoring to a specific radio channel 

Since BLE advertisements are repeated on all three primary fre
quencies, Bluetooth occupancy will be the same on all of them. Indeed, 
sniffers must remain anchored to one of the three primary channels for 
the entire measurement. Otherwise, if the reception frequency was 
changed periodically, packet losses would occur. This is because com
mercial devices take a time to switch frequencies, which causes a blind 
time in which no frequency is heard. This gap has been determined to 
range from several microseconds up to several milliseconds [20]. 

3.2. Underestimation errors: Quantification and compensation 

To have a first evaluation of sniffers performance and provide a 
means for compensation of underestimation errors, a controlled scenario 
is implemented initially. An increasing number of devices is deployed, 
and the channel occupancy is evaluated both with the sniffer and a real 
time signal analyzer for comparison purposes. Also, it is possible to 
compute the theoretical occupancy in this controlled scenario, so this is 
included in the study to check accuracies as well. 

To isolate the devices from other external actors, the measurements 
are done in a Faraday box (see Fig. 5). Moreover, all BLE devices are 
configured to generate advertising packets with a fixed length of Tadv =

304 μs with an advertising interval TadvInt = 100 ms. Note that the time 
between two advertising events is TadvInt plus a random delay (τadvDelay) 
uniformly distributed between 0 and 10 ms. Thus, the mean time be
tween advertisements is (x denotes mean of x): 

TadvInt = TadvInt + τadvDelay = 105 ms. (1) 

Due to pre and post packet sequences, real on-air time (occupancy 

time for one advertisement) isTon− air = 360 μs in this setup. 
Hence, we create a predictable scenario with computable theoretical 

occupancy. When n devices are generating advertisements, the occu
pancy probability is one minus the probability that all of them are not 
occupying the channel: 

POcn = 1 − (1 − POc1)
n
, (2) 

where POc1 is the channel occupancy probability of an advertising 
device, computed as the quotient of its activity (on-air) time and the 
mean inactive time: 

POc1 =
Ton− air

TadvInt
. (3) 

Fig. 6 shows the theoretical percentage of channel occupancy for an 
increasing number of devices (labeled as Math model). It can be seen that 
the real time signal analyzer shows an almost perfect match. 

On the other hand, the curve denoted as Sniffer Nordic/Texas raw 
represents the occupancy provided by the sniffers. Both chips from 
Nordic (nRF52840 and nRF52832) performed identically so a single line 
is plotted for them (Sniffer Nordic raw). Anyways, results with the Texas 
sniffers are almost identical with just 1 percentage point of difference 
when 100 devices are active. It can be observed that sniffers perform 
with an absolute error of 1.1 percentage points for occupancies of 5% 
and smaller. But the result tends to diverge from the real value as the 
load increases. An underestimation error is present, and it is directly 
proportional to occupancy. This is due to the effects previously 
analyzed. To overcome such underestimation a compensation procedure 
is proposed: 

The occupancy probability measured by the sniffer POc,sniffer is 

Fig. 5. In lab measurements are performed in a controlled environment in a Faraday box.  

Fig. 6. Analytical and experimental occupancy for an increasing number 
of devices. 
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computed from the captured packets and their duration Tadv during an 
observation time, Tobs. For example, if load variations happen in a scale 
of seconds, Tobs could be settled to 1 s and overlap the observed intervals 
to offer a temporal resolution of microseconds. In any case, the obser
vation time must be chosen according to the desired level of variability 
to be characterized. Note that the sniffer does not provide the real on-air 
time but just the net packet time, Tadv. 

From POc,sniffer, it is possible to obtain the number of equivalent devices, 
n1, that would generate such occupancy if their Tadv was the average 
duration of the captured packets, Tadv,obs, and their TadvInt was the 
observation time (Tobs). 

POc,sniffer = 1 −
(

1 −
Tadv,obs

Tobs

)n1

→n1 =
log

(
1 − POc,sniffer

)

log
(

1 −
Tadv,obs

Tobs

) . (4) 

Note that n1 is affected by the sniffer occupancy underestimation due 
to collisions and blind times. So, by estimating the PER, it is possible to 
obtain a more precise number of equivalent devices, n2. The PER equals 
the collision rate (CR) when collisions imply high interference and so 
insufficient SIR. In this sense, given a device that sends an advertisement 
at a time instant t, right after the pre advertisement sequence, it will 
collide with another, if the latter transmits in the interval 
[t − Ton− air, t + Tadv]. Hence, for the equivalent n1 devices: 

CR = 1 −
(

1 −
Tadv + Ton− air

Tobs

)n1 − 1

(5) 

However, as previously explained, some of the advertisements can be 
captured depending on the SIR and the final collision overlap. Then, a 
more realistic perceived PER could be defined as in (6) where ξ is a 
reduction factor which is commented later. 

PER = CR⋅ξ (6) 

From here we can now obtain n2, 

n1 = (1 − PER)n2→n2 =
n1

1 − PER
(7) 

And, thus, the estimated occupancy probability POc,est can be calcu
lated as: 

POc,est = 1 −
(

1 −
Ton− air

Tobs

)n2

(8) 

This is labeled as Sniffer processed in Fig. 7 (for both the Nordic and 
Texas case). Results are displayed for a ξ range from 0.5 to 0.8. The 

shaded area precisely indicates the region where the actual occupancy is 
located. To facilitate the comparison, all the curves in Fig. 6 are also 
plotted herein. For occupancies of 30% an error of 3 percentage points is 
made by excess and an underestimation error of 2.5 percentage points 
for the worst case. On the other hand, for occupancies of 10% the ab
solute error committed is under ±0.6 percentage points. 

Regarding the reduction factor ξ, it would be possible to provide an 
exact value that would obtain the actual occupancy, but this number 
would be scenario specific. Given the randomness in actual packet sizes, 
number of devices and the eventual occupancy of each device, it is 
considered more advisable to handle a range for ξ. Also, given the 
slightly lower underestimation error of the Texas sniffer, the range could 
be smaller for this second case. Nevertheless, as a rule-of-thumb, a ξ of 
0.8 allows to have a slight overestimation and can be taken as a refer
ence value that allows to play safe. For example, in cases where occu
pancy measurements are needed to configure a newly added Bluetooth 
mesh network. 

The use of this correction procedure based on collision rate estima
tions validates the utilization of sniffers as occupancy meters to be 
employed in scenarios where real time signal analyzers are not 
adequate, as previously argued. 

4. Results 

4.1. Measurement campaigns in campus. 

Initially, occupancy measurements have been made at different lo
cations on a university campus. Areas with different levels of close to 
constant load and with variations have been identified, see subfigure 
titles in Fig. 8. Note that in this and the following results, the nRF52840 
chip from Nordic has been used, which is the case that showed slightly 
more underestimation error. 

Given the perfect matching between the real time signal analyzer and 
the theoretical results previously observed, the device results are used as 
benchmark. However, the measurements must be limited to 80 s, since 
this is the maximum time allowed by the analyzer when operating with 
maximum temporary resolution, as discussed above. 

Plots show both the raw result provided by the sniffer itself and the 
occupancy value after applying the proposed processing. The results are 
satisfactory. As previously observed, major errors appear with higher 
occupancy. For instance, with high loads (Fig. 8(a), occupancy around 
40%), the absolute error of the upper bound (ξ = 0.8) is less than 4 
percentage points in 71% of the cases and it is less than 5 points in the 
95% of the cases. With average load (Fig. 8(b), occupancy around 27%), 
the 85% of the errors are now under 3 percentage points and the 
percentile 95% reduces to 3.5 points. Finally, with occupancies of 15% 
(not plotted), percentile 85 reduces to 1.5 percentage points and 
percentile 95 to 1.9 points. 

Fig. 8(c) and (d) show how the measurement tracks variations 
correctly and how the result becomes more accurate when load de
creases. For the lowest loads, it is possible to observe that real occupancy 
crosses with the lower bound estimation. This means that a value of ξ of 
0.5 may be insufficient when very low loads happen and the lower 
bound is indeed higher than real occupancy. However, the error is so 
small that it is not considered interesting to suggest a ξ range starting at 
0.4 or 0.45, as this would result in larger errors with high load, where 
the method is more imprecise. 

4.2. Measurement campaigns in real environments. 

Once the strategy has been validated, this last section shows mea
surements campaigns carried out in out-of-campus environments. The 
first set of measures has been carried out on two subway platforms. In 
those scenarios, load variations can be very abrupt in short intervals of 
time. However, short term alterations and occupancy peaks can be 
captured thanks to the high resolution allowed by sniffers. 

Fig. 7. Analytical and experimental occupancy (raw and processed) for an 
increasing number of devices. 

A. Valenzuela-Pérez et al.                                                                                                                                                                                                                     



Measurement 199 (2022) 111573

7

Fig. 9 shows occupancy estimation for the two platforms, recorded 
during 3600 s. Both the raw and processed data are plotted. Resolution 
allows to identify the load peaks every time a new train arrives and how 
long it remains in the platform. Once the platform is emptied, it can be 
seen a progressive accumulation of people waiting until a new load peak 
(new train) arrives. Occupancies can reach 18% so it can be claimed that 
advertisements are not saturating the allocated spectrum yet. However, 
this value implies that a very relevant PER is to be experienced. Indeed, 
the occupancy value establishes a lower bound estimation of the PER. 
This is because the most favorable situation happens when the SIR is 
sufficient to recover a packet in a collision. Here, packets are only lost 
when the receiver is busy decoding a previous advertisement. In these 
circumstances, the PER is directly determined by the probability of oc
cupancy of the channel itself, PERn,min = POcn = 1 − (1 − POc1)

n. 
Occupancy was also measured in a shopping mall. This case shows 

much slower variations, but periodicities can be found in a daily basis. 
Results were recorded for the same hour at different weekdays, showing 
a weekly pattern. This is depicted by Fig. 10, which shows the mean, 
maximum and minimum values that were recorded during the experi
ment. Note, in the horizontal axis, that the two sets of data correspond to 
two different weeks (indicated by two separate lines). For the sake of 

readability, only ξ = 0.8 is represented. In this scenario, a mean occu
pancy around 14% happens on Sundays when the shops in the mall are 
closed, and the maximum recorded value is close to 35% on Saturdays. 

As a note aside, it is interesting to observe that social behaviors can 
be analyzed from occupancy patterns [21]. For example, accumulation 
of people in train platforms at different moments of the day and 
depending on train frequency and/or special events. Another example, 
during the measurement campaigns at the mall, three days rained, and 
occupancy was reduced (Wed, Thu, Fri points in the second week). 
Hence, it is feasible to investigate the impact of different weather phe
nomena or other external causes on the influx of people to shopping 
malls. 

5. Conclusions 

An accurate measurement and characterization of BLE channel oc
cupancy imposes more stringent requisites to the methods that are 
usually employed for other technologies. Many works that study channel 
occupancy rely on spectral analysis and employ large time resolution 
relative to the size of BLE advertising packets. This implies too long 
measurement campaigns and not being able to track short-term 

Fig. 8. Occupancy measurements made with sniffer and signal analyzer in a campus environment. Measurements are shown in places with different load levels and 
levels of variability. 
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Fig. 9. Occupancy evaluation in subway platforms by means of post-processed sniffer data.  

Fig. 10. Mean, maximum and minimum occupancy in mall for the same hour and for two weeks.  
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variations. Real time signal analyzers are a valid option but show a 
compromise between accuracy and required measurement in
terruptions. Also, their large volume, weight, cost, transport difficulties 
and the need for an energy source, make them an impractical tool for 
many out-of-lab situations. 

BLE sniffers are proposed to measure occupancy in near-real time, 
thus being able to capture very short-term variations, recording for 
hours, without interruptions. Also, it is remarkable their low cost and 
excellent portability when combined with a laptop. The paper argues 
about specific problems that must be addressed for this approach to be 
successful, namely buffer saturation, channel anchoring and more 
importantly, the exact on-air time of a given packet and the existence of 
receiving blind times due to processing and packet overlapping. 

Results in a controllable lab scenario allow to quantify underesti
mation errors made with raw sniffer data. The error is directly propor
tional to occupancy, and sniffers just perform correctly for low loads, 
with an absolute error of 1.1 percentage points for occupancies of 5%. 
But the error is too large for higher occupancies. Hence, a compensation 
procedure is proposed to extend the use of sniffers to higher load levels 
being based on collision rate estimations. 

Results with the refined measurement procedure show that occu
pancies of 40% can be measured in real time with an overestimation 
error whose percentile 95% is 5 percentage points. This is reduced to 1.9 
points when the occupancy is 15%. The sniffers are shown to perfectly 
track short term occupancy variations. The strategy has been success
fully used to characterize occupancy in highly variable and loaded 
scenarios such as subway platforms and a shopping mall. Occupancies of 
18%-35% are experienced, and those values establish a lower bound of 
the PER. Thus, the measurements show that BLE technology is not 
saturating the spectrum yet, but a relevant PER is to be experienced. 
Hence, the tool can be used to make agile audits and configure the pa
rameters that control communication redundancy in new or existing BLE 
meshed networks and/or the mesh layout itself. The measurement 

proposal allows to extend its usefulness beyond identifying communi
cation problems. Examples are the analysis of social behavior, perfor
mance of services, and so on. 
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Appendix A 

When the sampling time is longer than the duration of a BLE advertising message, some packets are lost. The required number of samples to obtain 
an acceptable estimate of channel occupancy is calculated next. 

In this situation, and especially for very high sampling times, the state of the channel can be considered to be independent between samples. Then, 
the occupancy X is a random variable with Bernoulli distribution and characterized by a mean value μ = pocc and a standard deviation σocc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pocc(1 − pocc)

√
, being pocc the probability that the channel is occupied. When the measurement campaign is performed, a single mean occupancy m is 

obtained. But, according to the central limit theorem, the means of multiple experiments exhibit a normal distribution whose mean value is precisely μ 
and its deviation is σocc/

̅̅̅
n

√
, where n is the number of samples. Hence, the probability C that the mean occupancy of an experiment is in the interval 

(μ − δ, μ + δ) can be expressed as: 

P(μ − δ < m < μ+ δ) = C = erf
(

z
̅̅̅
2

√

)

. (A1) 

Where erf() is the error function and z is the standardized value (z-score) of μ + δ, i.e., z = δ
̅̅̅
n

√
/σocc. Equivalently, it is possible to rewrite the 

expression as follows: 

P(m − δ < μ < m+ δ) = P
(

m − z
σocc
̅̅̅
n

√ < μ < m+ z
σocc
̅̅̅
n

√

)

= C. (A2) 

This indicates that the actual mean occupancy μ is within the range (m − δ,m + δ) with a confidence level equal to C. By setting a value for the 
maximum desired error δ, it is possible to obtain the minimum number of samples needed: 

δ = z
σocc
̅̅̅
n

√ = z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pocc(1 − pocc)

n

√

, (A3)  

n =
z2

δ2pocc(1 − pocc). (A4) 

The occupancy is the parameter to be estimated, therefore, the worst case is calculated by considering the maximum possible uncertainty, pocc =

0.5. In addition, taking a typical confidence level of C = 0.9973 (three sigmas) implies z = 3, therefore: 

n ≥
2.25
δ2 . (A5) 
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For example, if it is needed to estimate an occupancy of 10% with a relative error of 5% (absolute error, δ = 0.005), n ≥ 90000.
Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.measurement.2022.111573. 
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