20 research outputs found

    Identification of sites for exponential translation in living dendrites

    No full text
    Neuronal processes contain mRNAs and membrane structures, and some forms of synaptic plasticity seem to require protein synthesis in dendrites of hippocampal neurons. To quantitate dendritic protein synthesis, we used multiphoton microscopy of green fluorescent protein synthesized in living isolated dendrites. Transfection of dendrites with mRNA encoding green fluorescent protein resulted in fluorescence that exponentially increased on stimulation with a glutamate receptor agonist; a reaction attenuated by the translation inhibitors anisomycin and emetine. Comparable experiments on whole neurons revealed that (RS)-3,5-dihydroxy-phenylglycine 0.5 H(2)O (DHPG)-stimulated fluorescence was linear in cell bodies relative to the exponential increase seen in dendrites. Detailed spatial analysis of the subdendritic distribution of fluorescence revealed “hotspots,” sites of dendritic translation that were spatially stable. However, detailed temporal analysis of these hotspots revealed heterogeneous rates of translation. A double-label protocol counterstaining for ribosomes indicated that sites of “fastest” translation correlated with increased ribosome density, consistent with ribosome subunit assembly for initiation, the first step of translation. We propose that dendrites have specific sites specialized for fast translation

    Height and Inequality in Spain: A Long-Term Perspective

    No full text

    Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory

    No full text
    Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes

    Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex

    No full text
    Synaptic depression is thought to underlie the loss of cortical responsiveness to an eye deprived of vision. Here, we establish a fundamental role for type 2 metabotropic glutamate receptors (mGluR2) in long-term depression (LTD) of synaptic transmission within primary visual cortex. Direct mGluR2 activation by (2S,2′R,3′R-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV) persistently depressed layer 2/3 field potentials in slices of mouse binocular zone when stimulated concomitantly. Chemical LTD was independent of N-methyl-d-aspartate (NMDA) receptors but occluded conventional LTD by low-frequency stimulation, indicating shared downstream events. Antagonists or targeted disruption of mGluR2 conversely prevented LTD induction by electrical low-frequency stimulation to layer 4. In contrast, Schaeffer collateral synapses did not exhibit chemical LTD, revealing hippocampal area CA1, naturally devoid of mGluR2, to be an inappropriate model for neocortical plasticity. Moreover, monocular deprivation remained effective in mice lacking mGluR2, and receptor expression levels were unchanged during the critical period in wild-type mice, indicating that experience-dependent plasticity is independent of LTD induction in visual cortex. Short-term depression that was unaffected by mGluR2 deletion may better reflect circuit refinement in vivo
    corecore