103 research outputs found
Tissue Engineering mit porösen Polyethylenimplantaten
Hintergrund: Eine Verbesserung der BiokompatibilitĂ€t von porösen Polyethylenimplantaten könnte postoperative Komplikationsraten senken und das klinisches Anwendungsgebiet des Biomaterials erweitern. Im Rahmen dieser Studie wurde untersucht, ob eine âVitalisierungâ von porösen Polyethylenimplantaten mit dermalen Fibroblasten möglich ist und ob hierdurch die mikrovaskulĂ€re Integration sowie die immunologische Reaktion des Wirtsorganismus beeinflusst werden konnte.
Material und Methoden: Poröse Polyethylenimplantate wurden in vitro mit GFP-markierten dermalen Fibroblasten kultiviert. Die auf dem Biomaterial adhĂ€renten Zellen wurden vor Implantation in dorsale RĂŒckenhautkammern an C57/Bl6 MĂ€usen mittels konfokaler Mikroskopie quantifiziert, ebenso nach Explantation. Native Implantate dienten als Kontrolle. Angiogeneseprozesse sowie die Leukozyten-Endothelzellinteraktion im Implantatmaterial wurden wiederholt mittels in vivo Fluoreszenzmikroskopie analysiert. AbschlieĂend wurde die dynamische Desintegrationskraft quantifiziert und eine Analyse immunmodulatorischer Zytokine durchgefĂŒhrt.
Ergebnisse: Poröse Polyethylenimplantate konnten nachhaltig mit dermalen Fibroblasten âvitalisiertâ werden. Mikrozirkulatorische Parameter nahmen wĂ€hrend des Beobachtungszeitraums zu, allerdings konnten keine signifikanten Unterschiede zwischen den Gruppen festgestellt werden. Einzelne immunmodulatorische Zytokine waren in âvitalisiertenâ porösen Polyethylenimplantaten tendenziell erhöht, eine signifikante Beeinflussung der Immunantwort des Wirtsorganismus war jedoch nicht festzustellen.
Schlussfolgerung: Eine âVitalisierungâ von porösen Polyethylenimplantaten mit dermalen Fibroblasten ist nachhaltig durchfĂŒhrbar, beeinflusst jedoch die mikrovaskulĂ€re Integration in vivo sowie die Immunreaktion des Wirtsorganismus nicht signifikant. Somit sind möglicherweise zusĂ€tzliche MaĂnahmen im Sinne eines Tissue Engineerings erforderlich, um die BiokompatibilitĂ€t von porösen Polyethylenimplantaten mittels dieser vielversprechenden Zellquelle zu verbessern
Assessing the role of advanced artificial intelligence as a tool in multidisciplinary tumor board decision-making for primary head and neck cancer cases
BackgroundHead and neck squamous cell carcinoma (HNSCC) is a complex malignancy that requires a multidisciplinary approach in clinical practice, especially in tumor board discussions. In recent years, artificial intelligence has emerged as a tool to assist healthcare professionals in making informed decisions. This study investigates the application of ChatGPT 3.5 and ChatGPT 4.0, natural language processing models, in tumor board decision-making.MethodsWe conducted a pilot study in October 2023 on 20 consecutive head and neck cancer patients discussed in our multidisciplinary tumor board (MDT). Patients with a primary diagnosis of head and neck cancer were included. The MDT and ChatGPT 3.5 and ChatGPT 4.0 recommendations for each patient were compared by two independent reviewers and the number of therapy options, the clinical recommendation, the explanation and the summarization were graded.ResultsIn this study, ChatGPT 3.5 provided mostly general answers for surgery, chemotherapy, and radiation therapy. For clinical recommendation, explanation and summarization ChatGPT 3.5 and 4.0 scored well, but demonstrated to be mostly an assisting tool, suggesting significantly more therapy options than our MDT, while some of the recommended treatment modalities like primary immunotherapy are not part of the current treatment guidelines.ConclusionsThis research demonstrates that advanced AI models at the moment can merely assist in the MDT setting, since the current versions list common therapy options, but sometimes recommend incorrect treatment options and in the case of ChatGPT 3.5 lack information on the source material
Recommended from our members
During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes
Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate TÂ cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress TÂ cell responses. The accumulation of neutrophils in TÂ cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy
Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors
Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt⟠, W+bb⟠and W+cc⟠is studied in the forward region of protonâproton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fbâ1 . The W bosons are reconstructed in the decays WââÎœ , where â denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study
PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19âfree surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19âfree surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19âfree surgical pathways. Patients who underwent surgery within COVID-19âfree surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19âfree surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity scoreâmatched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19âfree surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19âfree surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.
PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
Measurement of CP violation parameters and polarisation fractions in decays
The first measurement of asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of and . Together with constraints from , the results are used to constrain additional contributions due to penguin diagrams in the -violating phase , measured through decays to charmonium.The first measurement of CP asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb^{â}^{1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Together with constraints from B â J/Ï Ï, the results are used to constrain additional contributions due to penguin diagrams in the CP -violating phase Ï , measured through B decays to charmonium.The first measurement of asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of and . Together with constraints from , the results are used to constrain additional contributions due to penguin diagrams in the -violating phase , measured through decays to charmonium
Measurement of forward production in collisions at TeV
A measurement of the cross-section for production in collisions is presented using data corresponding to an integrated luminosity of fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive production cross-sections, where the decays to , are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for production in collisions is presented using data corresponding to an integrated luminosity of fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive production cross-sections, where the decays to , are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W â eÎœ production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eÎœ, are measured to be where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination
- âŠ